首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The performance of sub-slab-ventilation (SSV) systems has been parametrically studied with a numerical model that was earlier compared successfully with experiment ( Bonnefous et al., 1992 ). The model distinguishes between the sub-slab gravel and the underlying soil. It is used w examine system performance for the following system parameters: the permeability of the soil and of the sub-slab gravel, the magnitude of pressurization (or depressurization) applied by the SSV system, and the mode of SSV application (i.e. pressurization (SSP) or depressurization (SSD)). The mechanisms contributing to the successful performance of SSP and SSD systems are identified. For SSD systems, the mechanisms are (1) the inversion of the pressure gradient across the basement slab, and (2) the reduction of the radon concentration in the soil. For SSP systems, the mechanisms are (1) the elimination of convective flow of soil-gas from the soil into the sub-slab gravel by pressurization of the sub-slab region, (2) the reduction of the radon concentration in the soil, and (3) the suppression of diffusion of soil-gas from the soil into the sub-slab gravel by advective flow of air from the gravel bed into the subgravel soil. Numerical modeling demonstrates that placement of a sub-slab gravel layer substantially improves the SSV system performance. Except in the case of highly permeable soils, SSD systems are predicted to perform better than SSP systems. This prediction is consistent with reported field experience. The numerical model is used to elucidate the reasons for this difference in performance.  相似文献   

2.
In order to optimize the design of a national survey aimed to evaluate radon exposure of children in schools in Serbia, a pilot study was carried out in all the 334 primary schools of 13 municipalities of Southern Serbia. Based on data from passive measurements, rooms with annual radon concentration >300 Bq/m3 were found in 5% of schools. The mean annual radon concentration weighted with the number of pupils is 73 Bq/m3, 39% lower than the unweighted 119 Bq/m3 average concentration. The actual average concentration when children are in classrooms could be substantially lower. Variability between schools (CV = 65%), between floors (CV = 24%) and between rooms at the same floor (CV = 21%) was analyzed. The impact of school location, floor, and room usage on radon concentration was also assessed (with similar results) by univariate and multivariate analyses. On average, radon concentration in schools within towns is a factor of 0.60 lower than in villages and at higher floors is a factor of 0.68 lower than ground floor. Results can be useful for other countries with similar soil and building characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号