共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
4.
5.
在能耗制动方式下,制动时间是影响异步电机停车定位精度的重要参数。针对制动时间与其影响因素之间的非线性关系,提出基于BP神经网络的制动时间预测方法。通过实验采集样本数据,并对其做归一化处理;然后建立预测制动时间的BP网络模型;最后利用训练样本对BP网络进行训练,并将测试样本输入已经训练好的网络进行仿真。仿真结果表明,该方法有很好的预测效果。 相似文献
6.
7.
利用粗糙集、BP神经网络和有限元模拟3种方法有机结合,对AZ31镁合金挤压力进行快速预测。针对BP神经网络结构中隐层神经元个数、输入层至隐层神经元间初始权值大小的确定,提出一种基于粗糙集理论优化BP网络结构的方法,通过粗糙集属性约简、属性权重确定,对训练样本数据进行处理,根据结果确定BP网络的输入、输出、隐层神经元数及输入层至隐层神经元间初始权值,并应用于AZ31镁合金挤压力快速预测中,建立挤压工艺参数与挤压力间的非线性映射关系。与试验对比结果表明,该快速预测模型预测精度高,误差在5%以内;预测时间短,在10s左右。解决了传统挤压力预测中的精度差、效率低的问题。该方法还可推广应用到对挤压出口温度等参数的预测。 相似文献
8.
9.
10.
磨削参数的合理选择对于磨削加工过程有着重要的影响,将人工智能运用到磨削工艺参数的选择过程中是现代发展的一个新趋势.在分析现有的智能算法后,提出了一种利用BP神经网络模型来确定磨削参数的方法.在该方法中综合考虑影响磨削加工的因素,把它们列为神经网络系统的输入参数,并对输入参数进行编码;同时也对输出参数(砂轮速度、工件速度、磨削深度、磨削进给速度)进行了归一化处理以适应神经网络的学习.采用循环算法比较得出隐层的最优神经元个数,从而最终建立了磨削参数智能预测模型,并利用Matlab进行仿真预测,仿真结果表明该预测模型准确率很高,能为磨削参数的选择提供可靠数据. 相似文献
11.
激光焊缝宽度是考核激光拼焊板质量的重要指标之一,直接影响到拼焊板的成形性能.因此,通过对激光焊缝宽度进行预测可以达到焊接工艺参数优化的目的,以提高拼焊板的焊接质量与成形性能.本文利用BP人工神经网络技术建立了焊缝宽度预测模型,该模型可以实现对焊缝宽度的有效预测,预测精度达到96%以上,具有较好的工业实用价值. 相似文献
12.
13.
基于改进BP神经网络优化的管道腐蚀速率预测模型研究 总被引:1,自引:1,他引:1
目的构造金属管道腐蚀速率预测模型,预测管道的使用寿命。方法分析了二氧化碳(CO2)和硫化氢(H2S)对金属管道的腐蚀过程,给出了管道腐蚀的化学反应方程式。引用了BP神经网络构造金属管道腐蚀速率的数学模型,采用了改进粒子群算法对预测模型进行优化。以45号金属管道为例,借助于Matlab软件对管道腐蚀速率进行仿真验证,并与实验测量数据进行对比和分析。结果金属管道腐蚀速率随着CO2或H2S压强的增大而逐渐增大,仿真结果显示CO2和H2S的最大腐蚀速率分别为7.20×10-5 mm/h和5.76×10-5mm/h,而实验测量结果显示CO2和H2S的最大腐蚀速率分别为7.14×10-5 mm/h和5.65×10-5 mm/h,采用改进BP神经网络预测模型所产生的相对误差在5%以内。结论金属管道在不同压强条件下,采用改进BP神经网络预测模型能够近似地预测其腐蚀速率,为金属管道的更换提供了参考依据。 相似文献
14.
目的基于BP神经网络具有自学习、自训练和输出预测的功能,将其应用于热喷涂过程中的参数优化问题。方法依托高效能超音速等离子喷涂系统实验平台,以Fe基合金粉末为喷涂材料,将等离子喷涂中的主气流量、电功率和喷涂距离作为模型输入,涂层沉积速率和硬度作为模型输出,不断调整隐含层节点个数,最终建立3-7-2网络结构的BP神经网络以优化工艺参数。利用优化出的工艺参数制备Fe基合金涂层,测试其性能,并计算误差。结果神经网络优化出的最优喷涂工艺参数为:主气流量96L/min,电功率56 k W,喷涂距离95 mm。采用该工艺参数制备涂层,涂层增厚实测平均值为360μm,硬度为672HV0.3,而模型的预测值分别为332μm和611HV0.3,与预测值的相对误差分别为7.8%和9.1%。结论 BP神经网络对等离子喷涂参数优化问题的拟合精度比较高,误差在可以接受的范围之内。将BP神经网络运用于热喷涂工艺参数的优化具有科学性和可操作性。 相似文献
15.
以SCARA机器人为研究对象,在ADAMS软件中建立SCARA机器人模型,进行仿真。采集SCARA机器人大臂前后端、小臂前后端及底座等容易出现裂纹部位的加速度数据;在MATLAB中运用BP神经网络建立SCARA机器人故障诊断模型,实现利用BP神经网络对SCARA机器人故障进行智能识别与分类。结果表明:BP神经网络的计算结果与期望输出基本一致,验证了其准确性及可靠性。 相似文献
16.
17.
基于BP神经网络的TA15钛合金流动应力预测 总被引:1,自引:0,他引:1
利用Gleeble 1500热模拟机进行了TA15钛合金不同变形温度、变形程度和应变速率条件下的热压缩试验.在试验数据基础上,应用BP神经网络建立TA15钛合金高温变形本构关系.研究结果表明,通过BP神经网络得到的流动应力具有较高的精度,能够客观地反映TA15钛合金在塑性加工过程中的动态行为,具有重要的工程应用价值. 相似文献
18.
以3-UPS/S并联机器人机构为研究对象,构建一种基于虚拟实验与BP神经网络的并联机构输出误差预测模型,能够快速预测并联机器人机构的输出误差。充分考虑并联机构铰链安装误差与铰链轴线误差,建立包含上述输入误差的虚拟样机模型,通过虚拟实验仿真求解该机构输出误差;假定机构零部件在大批量生产情况下误差服从正态分布,构造多组服从正态分布的输入误差样本,进而建立该机构的BP神经网络预测模型。研究结果表明:该BP神经网络模型可以准确、快速地对机构位姿输出误差进行预测,为并联机器人机构的误差分析与精度综合提供了新的依据。 相似文献
19.
基于BP神经网络的管道腐蚀速率预测 总被引:1,自引:0,他引:1
本文将采用BP神经网络技术,以压力、温度、流速、含硫量和酸值作为输入参数,以管道内腐蚀速率作为输出参数,建立了输油管道的腐蚀速率预测模型。计算结果表明,该模型具有较好的预测精度,模拟出的腐蚀速率与实测值能较好的吻合,并且能够反映各因素与腐蚀速率之间的关系。 相似文献