共查询到20条相似文献,搜索用时 15 毫秒
1.
有效的短期电力负荷预测模型有利于保障电力系统稳定且高效地运行。为此,首先提出了一种具有相邻反馈的混合回声状态网络(hybrid echo state network with adjacent-feedback loop reservoir,HALR)模型,用以避免传统浅层模型使用单一类型神经元易产生奇异解的问题。然后,基于深度信念网络(deep neural network,DBN)和HALR模型提出了一种深度混合储备池计算(deep hybrid reservoir calculation,DHRC)模型,以提高传统模型的预测精度和效率,该模型实现了DBN优秀特征学习能力和HALR强大逼近性能的结合。将DHRC模型应用于比利时蒙斯大学采集的某地区电力负荷数据集,最终的X_(NRMSE)、X_(RMSE)和X_(MAPE)分别为0.6591、0.0541和4.8523%。最后,在西北某电网供电公司的实际应用中再次证明了DHRC模型的有效性。实验结果表明,与预测效果最佳的浅层模型HALR相比,DHRC的X_(NRMSE)、X_(RMSE)和X_(MAPE)分别降低了65.1685%、65.1079%和60.0954%;与预测效果较好的深度模型LSTM和DBEN相比,DHRC模型的预测效率分别提高了36.5566%和9.4276%。 相似文献
2.
电力系统超短期负荷预测的准确性直接影响到电力系统发电与用电量平衡的问题。目前大多数的电力系统超短期负荷预测都只利用了电荷负载变化本身的时间序列特效。而事实上,除电荷本身的时序特征,温度、湿度、降雨量和人口等因素也对电荷变化产生了明显的影响。利用某地2009-01-01至2015-01-09的数据建立了结合温度、湿度、降雨量等因素的多维度XGBoost模型,和只考虑时序特征的XGBoost模型进行了多角度比较。从平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)等多角度预测数据分析可以发现,只考虑时序特征的XGBoost模型可以很好地预测超短期负荷的整体变化趋势,而结合温度、湿度、降雨量等因素的多维度模型在整体趋势的基础上更好地预测了电网负荷变化的细节。同时也证实了机器学习中特征因素并不是越多越好,当特征项存在相关性过高的冗余因素时模型预测精度会降低。 相似文献
3.
针对电力负荷随机性较强,预测精度不高的问题,通过构建集合经验模态分解(ensembleempiricalmode decomposition,EEMD)以及门控循环单元神经网络(gated recurrent unit neural network,GRU)和多元线性回归(multiple linearregression,MLR)组合而成的EEMD-GRU-MLR(EGM)预测方法,有效提高了电力负荷短期预测精度。首先通过集合经验模态分解将电力负荷数据分解为频率由高到低的不同本征模态函数(intrinsicmodefunctions,IMF),不同频率的本征模态函数分量代表了电力负荷不同的部分特征,随后分别使用多元线性回归方法和GRU神经网络方法对低频部分和高频部分进行快速准确的预测,最后将所得各预测结果组合后得到完整的预测结果。EGM预测方法不但能够对电力负荷的变化趋势进行有效预测,而且能够准确预测随机性较强的局部特征。最后通过实验验证,该方法有效地提高了负荷预测精度。 相似文献
4.
5.
为了提高短期电力负荷预测的精度,提出一种基于极端梯度提升和长短期记忆网络的组合预测方法。首先采用Spearman相关系数法对负荷与气象因素进行相关性分析,提取模型输入特征。然后分别建立XGBoost、LSTM预测网络,并采用遗传算法优化网络的参数。最后利用模拟退火算法对各网络的预测结果分配最优权重系数,通过加权组合得到最终的集成预测结果。实验结果表明,XGBoost和LSTM组合模型对短期电力负荷预测的平均绝对百分比误差为0.88%,与XGBoost模型、LSTM模型相比,误差分别降低了2.17%、1.99%,在负荷预测领域更具有优势。 相似文献
6.
7.
针对目前电网在负荷预测中所采集到的数据普遍存在着特征维度较少;特征关系不明;有效数据量较少的特点,为了提高电网短期负荷预测精度,本文提出一种基于XGBoost算法的新型负荷预测模型。基于XGBoost算法的负荷预测模型采用CART树作为基学习器,输入预处理后的历史负荷和特征数据,通过构建多个弱学习器逐层训练模型并得到模型,最后向模型输入测试集特征得到最终的预测结果。本文所搭建的负荷预测模型具有避免对数据特征的标准化、处理字段缺失的数据、不用关心特征间是否相互依赖、学习效果好的优点。根据真实电网数据实验结果,基于XGBoost算法的负荷预测平均绝对误差百分比下降到3.46%,比本文所对比的基于BP、GRNN、DBN神经网络的负荷模型预测值精度更高,表明本文所提模型的优越性。 相似文献
8.
李国庆刘钊金国彬权然 《电网技术》2020,(2):437-445
电力系统超短期负荷预测易受到气象、假日等多种因素共同作用的影响,因此,实现其精准预测较为困难。为提高预测精度,往往需要大量的历史数据进行训练。针对历史数据较少的新建初期电力系统,提出了一种基于随机分布式嵌入框架及BP神经网络的超短期电力负荷预测方法。首先,将电力系统中电力负荷变量、气象变量等各种状态变量的延迟变量视为独立的影响因素,采用BP神经网络算法针对不同组延迟变量分别进行训练和预测,得到多个预测值。然后,采用核密度估计法拟合多个预测值形成分布的概率密度函数。最后,通过期望估计法或聚合估计法计算得出电力负荷的最终预测值。选取实际负荷数据进行算例分析,结果表明,所提方法适用于训练数据较少的超短期负荷预测,且相较于几种常规预测算法具有更高的预测精度以及较强的稳定性。 相似文献
9.
随着用户侧用能需求多元化的发展,多元负荷的超短期预测对于动态的大型综合能源系统的规划和优化至关重要。为此,该文提出一种基于长期和短期时间序列网络的多元负荷超短期预测模型。首先采用卷积神经网络来提取多元负荷之间的局部依赖关系,然后使用长短期记忆网络捕获负荷序列的长期依赖关系,使用具有循环跳过结构的长短期记忆网络充分学习负荷序列的超长期重复模式,最后采用自回归层和全连接层进行组合预测。使用平均绝对百分比误差和均方根误差作为评价指标,利用美国亚利桑那州立大学坦佩校区综合能源系统数据集进行验证,并与3种负荷预测方法比较。实验结果表明,提出的预测模型均优于其他方法且有较高的预测精度。 相似文献
10.
电力负荷数据具备时序性和非线性特征,长短时记忆神经网络(LSTM,long short-term memory)可以有效处理上述数据特性。然而LSTM算法性能对预置参数具有极大的依赖性,依靠经验设定的参数会使模型具有较低的泛化性能,降低了预测效果。为解决上述问题,提出非线性动态调整惯性权重粒子群算法(NIWPSO,nonlinear dynamic inertia weight strategy particle swarm optimization)与LSTM相结合的预测模型NIWPSO-LSTM。利用非线性动态调整惯性权重的方法来提升PSO的全局寻优能力,再通过NIWPSO对LSTM的参数进行优化。实验结果表明,NIWPSO-LSTM预测精度要远高于其他模型,验证了所提方案的可行性。 相似文献
11.
针对提前1小时的超短期负荷预测,在充分分析负荷特性的基础上,提出了基于自回归模型的超短期负荷预测,并利用拐点与负荷变化率的关系对预测结果修正。算例分析表明,该方法可以取得较高的预测精度。 相似文献
12.
13.
14.
15.
准确的负荷预测可以保证电网的安全稳定运行,提高电力系统运行的经济效益,为此,基于灰色理论建立了电力负荷预测模型,并结合陕西省汉中市区电力局某变电站2006年7月的实际负荷讨论了灰色模型在短期负荷预测中的应用,实例计算表明,该模型具有预测精度高、计算过程简单等特点。 相似文献
16.
17.
18.
短期电力负荷预测是电力系统合理调度与安全稳定运行的基础。为提高电力负荷预测精度,提出一种基于t分布邻域嵌入(t-SNE)算法和双向门控循环单元(Bi-GRU)网络的短期电力负荷预测方法。该方法首先通过多标签处理将电力负荷时序数据转换成高维时间戳数据,进而在维持数据信息完整性的前提下通过t-SNE算法对其降维,并结合实时电价数据,基于Bi-GRU网络学习时间戳数据、实时电价数据及实时负荷数据之间的非线性特性,最后经全连接输出层聚合相关信息给出预测结果。基于新加坡地区电力基准数据集进行试验,对比分析所建模型TSNE-BiGRU与基准模型Bi-GRU及GRU的预测性能。试验结果表明所建模型TSNE-BiGRU具有良好的鲁棒性,能有效提高短期电力负荷的预测精度。其平均百分比误差值为0.49%,相较Bi-GRU与GRU,分别降低了23.44%与32.88%;其平均绝对误差值为30.58,相较两基准模型分别降低了22.19%与32.84%;其均方根误差值为39.40,相较两基准模型分别降低了17.16%与27.88%。 相似文献
19.
为了提高电力系统短期负荷预测的精度,提出了基于小波分析的人工神经网络(ANN)和累积式自回归滑动平均(ARIMA)模型的组合预测方法。针对电力系统负荷具有拟周期性、非平稳性和非线性的特点,首先利用小波变换对负荷序列进行小波分解与单支重构,得到各频段上的近似序列和细节序列。根据各序列的自身特点,将经奇异性检测后的数据分别采用相匹配的BP模型和ARIMA模型进行预测,最后将各负荷序列的预测结果加以组合得到最终的预测结果。经实际算例验证,该方法能够有效地提高预测精度。 相似文献
20.
负荷预测是电力系统经济运行的基础,其对电力系统规划和运行都极其重要。由于影响负荷预测的因素较多,因此用常规的方法很难获得较好的预测结果。随着新一代人工智能技术的兴起,尤其以深度学习和大数据技术的快速发展,为进一步提高负荷预测的精确度奠定了良好的基础。文中将深度学习方法引入到电力系统的短期台区负荷预测中,综合利用了负荷台区的电压、电流、功率以及时间等特征信息。同时在已有的长短期记忆网络(LSTM)模型和宽度&深度(Wide&Deep)模型的基础上,建立了基于Wide&DeepLSTM的深度学习短期负荷预测模型,并在此基础上进行了日前台区负荷预测。该模型能够兼具深度神经网络的学习能力与LSTM模块的时间序列信息表达特性,能够较好地解决台区电力负荷预测的多特征维度及时序性特征问题。最后利用Tensorflow深度学习框架生成了仿真模型并加以验证,仿真结果充分证明了所提方法的准确性与实用性。 相似文献