首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以界沟煤矿8_220工作面机巷为研究对象,针对7_220工作面回采造成8_220机巷顶板不稳定的情况,运用极限平衡理论和弹性力学理论对煤柱一侧塑性区宽度和上位煤层底板应力分布规律进行研究。结果表明,7~#煤煤柱一侧塑性区宽度x_0为21.1 m,上位煤层开采后,原岩应力平衡状态被打破,在煤壁附近区域出现了应力集中区和卸压区。底板最大破坏深度h_(max)为15.91m,由塑性区宽度得出煤层底板最大破坏深度与煤壁的水平距离为7.41 m,采空区底板破坏区沿水平方向的最大距离为84.3 m。根据7~#煤层采空区左侧煤壁与8~#煤层回采巷道顶板中心线的相对位置不同,提出4套布置方案,通过综合分析,当煤壁与回采巷道顶板中心线距离为22 m时,回采巷道受力较小且均匀,塑性区分布不大,围岩变形量也很小,为最佳布置方案。  相似文献   

2.
本文针对某矿近距离采空区下5~#煤层回采巷道的合理布置,运用FLAC~(3D)模拟上层煤回采后采空区与煤柱应力分布,回采巷道不同布置方式产生的塑性区。结果表明:(1)3~#煤回采后采空区形成泄压区,煤柱内部及下方应力集中,5~#煤层巷道顶板所受垂直应力与巷道至煤柱距离成反比。(2)巷道外错破坏严重,內错煤柱留设大,重叠布置时顶部出现范围塑性区,采取支护优化可控,从其经济角度考虑巷道采取重叠布置。  相似文献   

3.
针对复合顶板沿空巷道煤柱合理尺寸难以确定及支护困难等问题,以泊江海子矿3-1煤层一面三巷布置的工作面为工程背景,采用理论分析和现场实测的方法,研究工作面回采后煤柱应力的分布规律。现场实测结果表明,工作面回采后煤柱应力沿侧向可分为低应力区和高应力区,低应力区距采空区边缘距离为14.5m,高应力区距采空区边缘距离为14.5~20m,最大应力峰值为29MPa,考虑到煤层裂隙发育、煤壁片帮等因素,综合确定沿空掘巷煤柱宽度为9m。同时结合具体地质条件进行沿空掘巷支护方案设计及矿压观测,巷道支护实践表明,试验巷道采用所确定的煤柱宽度及锚索网支护参数后,巷道围岩稳定,实现了工作面安全高效开采。  相似文献   

4.
为了解决煤柱下煤层开采所遇到的回采巷道合理布置问题,以山西某矿为工程背景,采用力学分析与数值计算的手段对上煤层开采后底板破坏深度、煤柱下方集中应力分布及巷道塑性破坏特征进行研究。结果表明:3#煤层开采底板最大破坏深度为6.2 m,对5#煤层开采影响较小;遗留煤柱造成的垂直与水平应力强度及分布范围随底板深度的增加而衰减,剪应力则反之,且深度超过12 m后应力变化趋于稳定,根据摩尔-库伦理论巷道重叠布置时垂直与水平应力差值较小,受不均衡力影响小;以模拟结果论证理论,巷道外错布置时塑性区最大,重叠次之,内错最小,并考虑资源浪费与经济等因素,选择重叠布置方式。  相似文献   

5.
基于极近距离煤层开采条件,应用弹塑性理论及弹性力学理论分别对上位煤层开采后对底板的屈服破坏深度及残留煤柱在底板的应力分布情况进行力学分析计算。通过对煤层塑性煤柱临界宽度的计算,确定上位残留煤柱的稳定性,其在底板的非均布应力对下位回采巷道的合理布置至关重要。经过综合分析确定出下位回采巷道合理的内错距,此方法可为极近距离煤层开采回采巷道的合理位置的确定提供一定的参考。  相似文献   

6.
《煤矿安全》2013,(5):210-213
采用数值模拟和场论分析的方法研究了嘉乐泉8#煤采空区下极近距离9#煤层回采巷道合理位置的选择问题,结果表明:8#煤残留煤柱支承压力使底板岩层中应力非均匀分布,其垂直应力σz的非均匀分布是巷道围岩的稳定性的主要影响因素;回采巷道应布置在采空区下垂直应力σz的应力降低区,以及巷道受力均衡区;嘉乐泉9#煤回采巷道布置在距8#煤残留煤柱边缘水平距离15 m的采空区下,经嘉乐泉煤矿9101工作面的回采实践证明了巷道布置的合理性。  相似文献   

7.
近距离煤层综放回采巷道合理位置确定   总被引:1,自引:0,他引:1  
针对近距离煤层开采下部煤层回采巷道布置这一难题,采用理论分析与数值模拟等手段对上位煤层开采后造成的底板破坏深度、残留煤柱在底板的应力分布以及巷道在非均布载荷下易于破坏的原因进行研究。研究表明:煤层开采引起的侧向支承压力对底板造成的最大破坏深度为25.3m,已经波及到下位煤层巷道所在水平;在煤柱两侧边缘出现一定范围的应力降低区,煤柱正下方出现一定范围的应力增高区,煤柱底板的应力分布具有明显的非均匀性;下位煤层巷道在非均布荷载作用下,更易出现局部拉应力过大,从而造成巷道变形破坏。采用主应力改变量Δσ表示应力不均衡程度,考虑最大限度回收资源,结合数值模拟主应力分布特征,确定下位煤层回采巷道布置在距煤柱水平距离14 m。  相似文献   

8.
为进一步研究厚煤层上区段工作面回采后巷道的布置层位和护巷煤柱的宽度,以山西省某矿6208运输巷为工程背景,采用理论分析和数值模拟相结合的方法。在采动影响下,理论计算煤柱宽度的值为7 m并分析煤柱应力分布的特点。利用UDEC数值软件模拟分析不同煤柱宽度下,巷道分别沿煤层顶板、底板掘进布置时其顶底板、实体煤帮、煤柱帮以及巷道一侧煤柱内部的变形和应力分布规律;得出巷道层位不同,最优的煤柱宽度也不同。相比宽煤柱下,窄煤柱对煤柱巷道具有相当的稳定效果,更有利于煤炭资源的节约和回收。在可允许变形条件下,最终确定试验巷道沿煤层底板掘进,其护巷煤柱宽度为7 m,围岩控制效果良好。  相似文献   

9.
为了解决近距离煤层群下位煤层沿空留巷受多次采动影响,巷道围岩变形破坏严重的问题,采用理论分析、数值模拟和现场实测方法,研究了巷道与回采空间合理的相对位置及支护参数。研究结果表明:上位煤层开采后在采空区正下方出现一定范围的应力降低区,为沿空留巷的布置创造了有利条件;上位煤层残留煤柱下方一定范围出现应力集中,煤柱影响范围和3+4煤层的交接与煤柱的水平距离为10.8~11.54 m。现场矿压观测表明,沿空留巷布置及巷道支护设计是合理的,巷道顶底板移近量以及墙体受力大小都在可控的范围内,为相似条件下沿空留巷合理空间布置及支护设计提供了依据和指导。  相似文献   

10.
孟浩  陈宝宝 《煤矿安全》2015,46(5):167-171
针对新柳煤矿近距离煤层群开采的下位煤层巷道布置难题,综合采用理论分析,数值模拟及现场实测的方法,对新柳煤矿9#煤层不同煤柱宽度下,10#及11#煤层合采时巷道布置位置进行研究。结果表明:当煤柱宽度小于7 m时,煤柱整体进入塑性状态;煤柱下方岩层的垂直应力集中程度明显降低,下位煤层巷道布置可不考虑上位煤层煤柱影响,可采用外错式、内错式和重叠式布置形式。煤柱宽度处于7~10 m时,煤柱虽不能形成稳定煤柱,但整体未进入塑性状态,下位煤层巷道可采用内错式或重叠式布置方式。当煤柱宽度大于10 m时,煤柱能够形成稳定煤柱,其传递的集中载荷在底板形成较大范围的应力增高区,巷道布置宜采用内错式布置形式,内错距离为7 m左右。  相似文献   

11.
为了研究极近距离煤层上煤层开采后应力、采空区对下煤层回采巷道布置及支护效果的影响,采用理论分析、数值模拟和现场实践等方法,根据塑性理论计算采空区底板最大破坏深度及范围,最大破坏深度达9.2 m,破坏范围为20.5 m.通过FLAC3D数值软件模拟分析了极近距离煤层开采底板巷道围岩应力分布规律,得出距离底板不同深度的应力...  相似文献   

12.
为解决近距离煤层采空区下和上区段工作面动压双重因素影响下的煤层回采巷道布置问题,以小纪汗矿29205工作面为工程背景,在巷道围岩地质力学测试的基础上,运用FLAC数值模拟软件对29205正巷不同布置方式下围岩应力分布和塑性破坏特征进行研究,并结合围岩控制方面提出合理的支护措施,确定最佳巷道布置方式。研究结果表明:综合考虑各因素,29205正巷采用内错距离为中对中7m煤柱,实体煤柱为3m的布置方式,布置于8#煤采空区下方。  相似文献   

13.
急倾斜煤层工作面应力分布与破坏特征数值模拟   总被引:1,自引:0,他引:1  
根据新铁煤矿49#下右六片急倾斜煤层走向长壁综采工作面煤岩赋存条件以及回采工作面采空区冒落矸石的充填特征,应用FLAC3D软件模拟在采空区中下部矸石自溜充填后工作面采动煤岩应力分布规律及顶底板破坏特征。研究结果表明:急倾斜煤层开采过后,工作面上下端部垂直应力集中系数最大,应力集中现象非常严重且在采空区后方距工作面煤壁15 m附近上下端部垂直应力达到最大值;在采空区后方随着距工作面煤壁距离的增加,剪切应力先减小,然后增加,最后趋于稳定,在采空区后方距工作面煤壁34~38 m区域剪切应力最小;工作面顶板塑性破坏剧烈,塑性破坏形式多样,工作面底板破坏较小,破坏形式简单,顶板上端部破坏高度小,顶板下端部破坏高度大。  相似文献   

14.
《煤炭工程》2021,53(7)
针对极近距离煤层回采巷道维护困难的问题,结合山西登茂通矿具体地质条件,采用理论计算和UDEC数值模拟相结合的方法,研究了3106工作面回采巷道合理布置及围岩控制,2~#煤残留煤柱下方11m范围内底板应力呈不均匀分布特征,受剧烈的非均布荷载影响下位煤层巷道顶板和巷帮易发生局部过度承载而破坏;距残留煤柱边缘15m范围内的巷道变形破坏具有显著差异性,距残留煤柱中心越近,巷道围岩破坏越严重,稳定性越差,极近距离下位煤层回采巷道布置应避开应力增高区和高水平应力的应力降低区;合适的锚杆(索)支护结构可有效抑制围岩损伤裂隙的增加并使围岩趋于稳定。3106工作面回采巷道实践表明:回采巷道布置在距残留煤柱边缘15m处并采用高强度锚杆(索)关键部位协同支护方案,可减小残留煤柱底板应力影响,有利于保持巷道围岩整体稳定性。  相似文献   

15.
近距离煤层开采时,上位煤层的遗留煤柱集中应力会对下位煤层邻近采空区的巷道掘进产生扰动影响。针对下峪口煤矿3#煤层回采巷道掘进时产生的非对称变形破坏及支护困难等问题,结合现场地质条件,采用力学分析、数值模拟和现场试验的方法,探究23306进风巷掘进期间产生的非对称变形机理,并提出合理的巷道支护参数及工艺,改善了巷道围岩条件。研究结果表明:上位煤层遗留煤柱及本煤层邻近采空区的存在导致巷道围岩主应力方向及大小发生变化,而非均匀的应力分布致使巷道围岩塑性区呈现蝶形破坏,巷道顶板水平应力变化幅度大、剪切应力大,造成巷道顶板极度破碎,顶板至上覆采空区间全为塑性区分布,顶板两侧应力及塑性区的差异性分布是造成巷道非对称变形的主要原因;数值模拟得到煤柱内X-Y,X-Z,Z-Z方向的应力受本煤层邻近采空区的影响较大,巷道两侧应力大小不等,致使巷道产生非对称变形;根据巷道围岩的受力状态、工作面地质条件及支护成本,优化了巷道支护参数,现场应用效果良好。  相似文献   

16.
针对近距离煤层开采下部煤层回采巷道矿压显现剧烈这一难题,根据某矿10303综放工作面地质和开采条件,结合综放回采巷道现场矿压观测结果,采用FLAC3D数值计算分析回采巷道应力场分布以及塑性破坏场情况,研究表明,在上位煤层残留煤柱影响和本煤层工作面采动引起的应力重新分布耦合作用下,回采巷道顶底板及两帮移近量高达1 947、2 086 mm,巷道变形破坏严重,矿压显现剧烈。提出把巷道布置在采空区下方应力降低区内,减少本煤层区段煤柱宽度以及加强巷道支护可保证下煤层巷道稳定。  相似文献   

17.
为探求马兰矿12503工作面胶运巷合理的布置位置,利用FLAC3D数值模拟软件分别对巷道位于采空区下、煤柱边缘下及煤柱下时进行模拟研究,分析巷道在处于不同位置时围岩应力及塑性区分布特征,并根据数值模拟结果对巷道处于不同位置时分别给出支护参数。结果表明:12503工作面胶运巷的合理布置位置为距离02#煤层12503采空区下方大于14 m,距离煤柱边缘大于6 m处;当巷道布置于采空区下8 m、煤柱边缘时顶底板及两帮变形量大,需对支护参数进行优化,根据模拟结果显示优化支护参数后巷道围岩变形得到了有效控制。  相似文献   

18.
针对近距离煤层开采过程中下位煤层回采巷道受上位煤层开采影响煤柱应力集中、巷道支护困难等问题,以山西焦煤集团西铭矿8# 煤和9# 煤两层近距离煤层为研究对象,通过对比内错布置与外错布置的优缺点,提出了一种内外错相结合的回采巷道布置方式,并分析了煤柱宽度和巷道偏移距离对煤柱下巷道围岩变形的影响.研究结果表明:内外错相结合的巷道布置方式减小了巷道变形量,保证下位煤层安全高效开采;随上位煤层煤柱宽度增加,煤柱下巷道围岩变形量逐渐减小,结合现场工况计算得到煤柱宽度以40m 为宜;位于上位煤层煤柱下方的巷道围岩应力呈不对称分布,巷道的合理位置位于煤柱正下方左偏2m 处,此时巷道顶板及两帮的应力分布基本对称.研究结果能够为近距离煤层下位煤层的巷道布置提供参考依据.  相似文献   

19.
为了研究上煤层采空区对其下伏近距离特厚煤层的影响,确定下煤层巷道布置内错距离;以国投塔山煤矿为背景,基于有限差分数值方法,运用双屈服本构模型实时修正手段,模拟了上煤层采空区垮落带岩体压实特性,阐明了采空区下伏煤岩层内应力场传递规律及塑性破坏发育范围;结合理论分析及现场钻孔窥视结果,验证了数值结果的可靠性,确定了下煤层回采巷道布置内错距离。结果表明:上煤层采空区内遗留区段煤柱下方应力场在下煤层中形成近似"正梯形"影响范围,上下影响宽度分别为32、56 m;遗留区段煤柱下方塑性区在下煤层中呈"倒梯形"分布,上下塑性区宽度分别为81.36、61.47 m;结合理论分析及现场钻孔窥视结果,最终确定下煤层回采巷道内错距离应为13.5 m。  相似文献   

20.
陈跃朋 《中州煤炭》2018,(3):164-169
确定巷间煤柱合理尺寸是保证留底煤掘进双巷布置大采高工作面安全、高产与高效的关键所在。以某矿122106大采高工作面沿底掘进胶运巷和辅运巷之间的护巷煤柱为工程背景,对工作面生产地质条件展开现场调研,同时原位测试巷道围岩地质力学参数。基于上述原始数据理论,估算出煤柱极限强度与合理的煤柱宽度范围,通过数值试验研究手段,分析初步选定宽度煤柱条件下,二次回采阶段巷道围岩及煤柱内部应力、位移和塑性破坏特征。结果表明:煤柱的极限强度为50.48 MPa,合理的煤柱宽度为19.24~29.28 m。煤柱宽度20 m时,煤柱内塑性区是2个独立的区域;当煤柱宽度达到一定程度后,接续面回采对上个工作面侧煤柱应力影响较小,主要是对本侧煤柱影响较大;靠近煤柱侧顶板和帮部变形较大,垂直位移最大值集中在巷道肩角位置,顶板出现不均匀下沉;煤柱核区内垂直应力均小于其极限强度,能保证稳定;煤柱最大垂直应力集中在两侧,靠近采空区的位置,煤柱中部存在较明显的应力下降区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号