首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高寒高海拔地区常年受冻融循环作用影响,裂隙岩体冻胀现象普遍存在。为探究冻胀力在裂隙冻胀变形中的演化规律,揭示裂隙岩石的冻胀损伤机制,利用分布式压力薄膜传感器、温度传感器和应变仪组成的测试系统,对不同裂隙宽度的饱和裂隙红砂岩试样的冻融过程进行实时全面监测,获得裂隙冻胀力、温度和裂隙应变随时间变化的曲线。试验结果表明:在冻融过程中,饱水裂隙红砂岩裂隙内20 mm处出现恒温平台,标志着裂隙水发生冻结,且裂隙宽度越大,恒温平台出现时刻越早;岩石表面应变与温度变化拐点同步,裂隙应变拐点滞后于温度拐点,但裂隙应变与最大冻胀力的变化同步;在恒温平台出现时,岩石表面应变快速上升,主要是岩石骨架收缩和岩石孔隙水冻胀共同作用引起的;岩石表面温度变化比裂隙内温度变化更快,导致裂隙水的冻胀有所滞后;在融化过程,冻胀力和应变均再次爬升,并出现次高点;对于宽度在2~4 mm范围内的裂隙,最大冻胀力峰值随着裂隙宽度增大而增加;在整个冻融过程中,冻胀力的分布是不规则的、冻胀力由四周向内部递增,四周的冻胀力大小基本保持不变;冻融机制分析表明:岩块周边首先形成冻结层,然后裂隙水发生冻结逐渐形成冰塞,当冰塞不再滑移、达到完...  相似文献   

2.
裂隙岩体冻融损伤研究进展与思考   总被引:2,自引:0,他引:2  
 裂隙岩体具有不同于土体的结构和强度特征,现有冻土理论不能解决低温岩体裂隙冻胀开裂、扩展演化问题,冻融过程中水分迁移机制、冻胀力的量值与萌生消散机制以及裂隙冻融扩展演化机制等是研究裂隙岩体冻融损伤的关键问题。对裂隙岩体中的水分迁移机制研究应立足于微观尺度,从分凝冰理论入手,关注于未冻水膜的迁移机制。低温裂隙岩体冻融损伤程度受到裂隙中冻胀力大小控制,而冻胀力大小和裂隙冻融扩展机制与裂隙的空间位置形态、未冻水含量、冻结温度以及岩石的物理力学性质等因素有关。几十年来,对岩体冻融裂隙扩展的研究主要集中在理论模型探究、室内裂隙岩体冻融试验和现场监测分析3个方面,取得了丰硕的成果,但目前关于冻岩的研究还远未成熟,要深入揭示裂隙岩体冻融损伤演化机制,还应借助于室内试验从裂隙岩体冻融水分迁移机制入手,以探究冻胀力量值的求解方法为初步目标,进而结合岩体裂隙扩展准则研究冻胀力对岩体裂隙网络发展的影响。  相似文献   

3.
孔隙水的冻结是寒区岩体发生冻胀损伤的根源,研究未冻水含量演化规律对于了解孔隙水的冻结过程,揭示冻结岩体的损伤机制具有重要意义。以完整与双裂隙砂岩为研究对象,开展不同冻结温度(-2℃,-5℃,-10℃,-15℃,-20℃)下循环冻融试验,采用核磁共振系统检测未冻水含量变化。通过分析冻结温度、冻融次数、裂隙对未冻水的影响,探究未冻水含量与砂岩细观损伤的关联。结果表明:(1)岩样未冻水含量随温度降低呈指数型衰减,在温度梯度作用下,毛细水的冻结速率最快,自由水次之,结合水的冻结速率最慢;(2)未冻水含量与冻融循环次数线性负相关,当冻结温度低于-20℃时,冻融次数对未冻水含量的影响减弱,但裂隙的存在促使冻融前期自由水冻结速率加快,中、后期结合水加速冻结,相比完整岩样,裂隙岩样未冻水含量减少5%;(3)岩石孔隙体积和渗透率均与冰含量呈正相关,裂隙岩石的冻融损伤主要是由于冻融前期自由水的原位冻结,后期结合水的继续冻结以及毛细水的迁移过程造成的。该研究有助于深入了解裂隙岩石的冻融特性,为寒区岩体工程安全建设与运营提供理论依据。  相似文献   

4.
为了研究寒区裂隙冻岩隧道冻胀力并建立合理的计算模型,以川藏公路雀儿山隧道为工程依托,组合利用水压力计、土压力盒和多点铂电阻温度传感器进行冻胀力原位测试,考虑静水压力,提出了裂隙成环贯通原位冻胀时的隧道宏观冻胀力理论模型,并将计算结果与原位测试结果进行了比较分析。研究结果表明:现场原位测试方法考虑了岩-水-冰在冻结过程中随时间和温度的变化特征,避免了对裂隙岩石细观结构模型的讨论,方案合理且易于实施;裂隙岩石冻结前水压力随径向深度增加而线性减小,径向1.5~2m围岩内裂隙水挤出形成急剧增压区间,靠近结构处水压力降到最低;原位测试得到冻胀压力0.615~3.355MPa,空间分布以拱顶处最小,拱腰处最大,冻胀力模型计算得到的冻胀压力约0.46MPa,去除水压力,裂隙成环贯通宏观冻胀力理论模型计算结果接近于工程实际。  相似文献   

5.
我国寒区分布广泛,在寒区工程建设和资源开采过程中,会遇到很多岩体工程冻融损伤破坏的问题,严重威胁着岩体工程的安全稳定,并造成巨大的经济损失。以"裂隙岩体冻融损伤力学特性及多场耦合过程"为主题,将裂隙岩体视为岩块系统和裂隙系统,通过室内试验、理论分析和数值模拟等多种手段,对涉及冻岩领域的相关问题展开研究,取得如下成果:(1)通过测试低温环境下饱和及干燥的花岗岩、白砂岩和砂质泥岩随降温产生的应变特征,研究岩石冻胀融缩效应。结果表明:在一次冻融循环内,干燥岩样发生线弹性变形,而饱水岩石的变形经历冷缩阶段、冻胀阶段、升温迟滞阶段、融缩阶段和热胀阶段等阶段。一次冻融循环内,干燥岩样未产生残余应变,而饱水岩样产生明显的残余应变。(2)基于物理化学相关理论,考虑岩体裂隙水相变的特殊性,分析水冰相变平衡物态方程,得出冰点与压力的关系,并根据能量守恒定律和功能原理推导出冻结率的表达式。提出"等效热膨胀系数法"模拟裂隙水的冻胀融缩效应,同时模拟冻胀荷载作用下夹冰(水)裂隙尖端的应力场分布,并与解析解进行对比。(3)参照岩石冻胀变形试验和相变分析的相关结论,将岩石在低温环境下的变形分解为热应变、冻胀应变和围压产生的弹塑性应变3部分,建立岩石准蠕变冻胀本构模型。引入冻胀激活单元,用以控制冻胀单元是否发生作用。以FLAC3D现有的本构模型为蓝本,运用VC++编写本构模型动态链接库文件,并借助Fish函数对冻结过程中的黏聚力、内摩擦角等力学参数进行动态调整,同时控制冻胀激活单元的工作状态。(4)运用双重孔隙介质模型理论,根据质量守恒定律、能量守恒定律及静力平衡原理,并考虑岩体水冰相变的参与,得出冻结条件下裂隙岩体的热水力(THM)耦合控制方程。通过一个含裂隙隧道低温THM耦合算例,研究低温THM耦合条件下的温度场、应力场及孔隙压力等的分布规律。(5)基于脆性断裂力学理论,分析冻胀条件下压剪复合裂纹起裂扩展判据,得出冻胀力和围压共同作用下的裂隙起裂条件、扩展方向和扩展长度公式,并分析冻胀裂隙岩桥的贯通模式。基于拓扑学相关理论,提出一种可实现二维冻胀裂隙网络扩展演化的算法,可实现扩展路径定义、扩展域单元的识别及更新、裂隙贯通判断等功能。(6)结合上述研究成果,以Chalmers理工大学试验低温储库为工程背景进行模拟,按照现场试验条件施加温度和力学边界条件,对冻结过程中的温度场、位移场等进行模拟,并与实测的变形和温度测试结果进行对比。此外,以高寒地带的乌鞘岭隧道为工程背景,对洞口端冻融环境下围岩温度场、应力场、位移场的分布规律,以及冻结状态分区等问题进行研究。  相似文献   

6.
 寒区岩石在季节性温度变化下会经历冻胀融缩过程,研究低温岩石中未冻水含量以及冻胀变形规律是进行寒区工程数值仿真和稳定性分析的关键问题。岩石是不同于土体的脆性多孔介质材料,孔隙中的未冻水含量还无法通过实验直接测量;基于累计孔隙体积分布规律,考虑孔隙水的冻结点变化和未冻水膜的影响建立低温岩石未冻水含量理论表达式,实例证明该计算式具有较高的可靠度。假定岩石为弹性孔隙介质,基于孔隙冰与岩石孔隙间的膨胀耦合关系可计算冰压力;利用应变等价原理将孔隙中的冰压力等效为岩石表面的三向拉应力,从而根据弹性理论建立了有效冻胀力下低温饱和岩石冻胀变形模型。结果表明饱和岩石低温冻胀变形与岩石基质的力学参数、岩石孔隙率以及未冻水含量等因素有关。最后通过与2个已有的室内冻胀变形实验对比,说明本文冻胀变形模型的正确性以及实用性。  相似文献   

7.
为阐明土/岩体在冻融过程中产生的冻融回滞与不均匀冻胀现象,对冻融回滞与冻融水分迁移机制开展研究。首先,根据广义Clapeyron方程和Gibbs-Thomson方程,给出任意弯曲界面液相水的冻结温度方程,构建毛细管的冻结与融化模型;据此,引入抗冻性较差的“主干–旁枝型”孔隙结构,构建毛细–薄膜水的冻融回滞三角形模型;最后,通过低场核磁共振试验,验证该模型的正确性。研究表明:(1)由于冻融边界曲率差异,致使毛细压力为界面压力2倍,造成融化温度仅为冻结温度的1/2;(2)界面压力仅与边界条件有关,与冻融过程无关;(3)界面压力与理论冰压、理论吸力、迁移驱动力和表面吸附力无关,但与理论液压与净吸力成反比;(4)在界面压力作用下,净吸力在冻融过程中始终保持:P_(Suhi,1)相似文献   

8.
 土体冻融过程中的未冻水含量是控制水分迁移及冻胀融沉的关键因素,而冻结温度是判断土体是否处于冻结状态的重要指标。基于频域反射法(FDR),测定不同初始体积含水率条件下青藏高原粉质黏土,冻融过程中的体积未冻水含量及温度变化,分析引起体积未冻水含量及冻结温度产生差异的主要原因。试验结果表明:初始含水率较高的土体,冻结过程中出现了很明显的过冷现象以及温度和体积未冻水含量的突变,而初始含水率较低的土体,这种现象并不明显。初始含水率较大的土体冻结先于初始含水率较小的土体,并且对温度突变的敏感性大于初始含水率较小的土体。对冻融过程体积未冻水含量的滞后分析发现,体积未冻水滞后度?θ和温度滞后度?T均是先增大后减小,体积未冻水滞后度?θ的峰值发生在相变区附近,其峰值随着初始含水率的增大而增大。当初始含水率等于或高于液限含水率时,含水率对冻结温度影响不大;当初始含水率低于液限含水率时,冻结温度随含水率减小而降低。  相似文献   

9.
为研究不同含水率黄土在一维冻结条件下温度场、冻胀量和水平冻胀力的变化特征规律及冻胀力与冻结温度之间的动态关系,选取兰州地区黄土进行了封闭系统下的一维冻胀试验。研究结果表明:土体的降温过程分为3个阶段,降温冻结初期各深度土体的温度下降速率较快;土体温度下降到0 ℃时降温曲线出现转折点,土层各深度降温速率曲线出现近乎平行于横坐标的平稳段;冻结后期各深度土体的温度下降速率较慢。冻胀量变化曲线按照变化趋势分为3个阶段: 轻微冻缩阶段,快速发展阶段,拟稳定阶段,不同含水率的土体经历各阶段的时间有所不同。冻胀量随着土体含水率的增加而增大,本试验中含水率14%和20%的土体最终冻胀量分别为3.52 mm和 8.23 mm。在相同土质和温度条件下冻胀力发展的起始温度相同,约为0.60 ℃,含水率不同的土体出现最大水平冻胀力的温度不同。最大水平冻胀力沿土体深度先增大后减小,最大值出现在相对深度0.6~0.8处。  相似文献   

10.
 岩体冻融损伤涉及低温环境下温度场、渗流场和应力场的耦合问题。基于水–冰相变理论和能量守恒原理,得出冻结率表达式。运用双重孔隙介质模型理论,根据质量守恒定律、能量守恒定律及静力平衡原理,得出冻结条件下裂隙岩体的温度场–渗流场–应力场(THM)耦合控制方程。最后,通过1个含裂隙隧道低温THM耦合算例,将围岩当作岩块与裂隙介质组成的系统,采用等效热膨胀系数法对夹冰(含水)裂隙的冻胀效应进行模拟,并考虑冻结过程对岩体渗透系数的影响,研究低温THM耦合条件下的温度场、应力场及孔隙压力等的分布规律。  相似文献   

11.
对含水率为18.3%的非饱和粉土进行了冻融过程中不同温度下的直剪试验,用核磁共振测定了冻融过程中孔隙水的相变过程,并分析了未冻水、孔隙冰对其力学性质的影响机制。试验结果表明:(1)非饱和粉土冻结可分为过冷段(-1.15℃)、快速冻结阶段(-1.15℃~-2℃)和稳定冻结阶段(-2℃),快速冻结阶段76%的孔隙水冻结,而稳定冻结阶段未冻水含量只减少7%;(2)冻融过程中黏聚力随温度发生显著变化,内摩擦角变化幅度很小;(3)冻结过程中抗剪强度的变化主要发生在稳定冻结阶段,快速冻结阶段黏聚力仅增大38.5%,内摩擦角基本无变化,而稳定冻结阶段黏聚力增大123.5%,内摩擦角降低12%。得到以下结论:(1)快速冻结阶段黏聚力增大主要是由于孔隙水冻结导致基质吸力增大,毛细黏聚作用增强;稳定冻结阶段黏聚力增大主要是由于冰对土颗粒胶结强度增大;(2)含冰量变化不大时,冻土抗剪强度主要受冰对土颗粒胶结强度的控制,而此胶结强度决定于未冻水膜的厚度;(3)稳定冻结阶段内摩擦角降低主要由孔隙中水冰相变发生体积膨胀时对土颗粒骨架的作用力导致。  相似文献   

12.
周志云  李强  孙敏 《混凝土》2011,(1):40-43
基于饱和砂浆试件在冻融循环作用下冻融变形的实测结果,并通过对混凝土孔隙内冰结晶的热力学分析,明确了混凝土的冻融变形的发展机理.孔隙水的冻结受冰点降低、过冷却和冰晶核的影响;冻结收缩是由冻结冰晶施加给未冻结孔隙水的冻结吸力引起的;冻结膨胀不仅受系统温度、初始冻结点以及孔隙结构影响,而且受冰晶体形成的程度和孔隙壁抗拉强度的...  相似文献   

13.
λ鉴于毛细理论和薄膜水理论只考虑一种水分迁移机制,难以全面合理揭示土体冻胀机理。根据毛细水和薄膜水在孔隙中的赋存特征,提出以孔径D=0.1μm或横向弛豫时间T2=2.5 ms作为毛细水和薄膜水的判别条件。基于流体动力学和热力学基本原理,分别建立了薄膜水迁移驱动力、广义Clapeyron方程力学和毛细–薄膜水迁移驱动力模型,给出了压力变量和吸力变量之间的换算系数λ;模型分析表明,冻结大孔在弯曲冰–水界面处产生一集中吸力,驱使未冻孔隙中的毛细水和薄膜水向冻结大孔内部迁移;其迁移路径为:未冻孔隙中的毛细水和颗粒表面薄膜水→弯曲冰–水界面→冻结大孔内壁薄膜水。最后,根据粉土在冻结过程中的低场–核磁共振试验,证明了毛细水和薄膜水的分界线,并验证了毛细–薄膜水分迁移模型及迁移路径的正确性。  相似文献   

14.
寒区隧道围岩的冻结是沿隧道径向的单向冻结,而不是常规岩石冻胀试验中的各向均匀冻结。为研究岩石在不同冻结条件下的冻胀变形规律,进而证实寒区隧道围岩单向冻结条件下具有不均匀冻胀性,分别进行封闭条件下饱和砂岩各向均匀和单向冻结时冻胀特性的对比试验。其中单向冻结试验利用自行设计的装置成功地进行。试验表明,封闭条件下饱和砂岩各向均匀冻结时,冻胀变形各向相等,变形过程可以划分为冷缩、冻胀、稳定3个阶段;而单向冻结时,沿冻结方向冻胀应变明显大于垂直冻结方向冻胀变形,且沿冻结方向冻胀应变变化过程也不同于垂直冻结方向冻胀应变,垂直冻结方向变形过程仍为冷缩、冻胀、稳定3个阶段,而沿冻结方向变形过程表现为冷缩、快速冻胀、冻胀量降低、稳定4个阶段,岩石表现出明显的不均匀冻胀性。试验测得饱和砂岩在0.7~2.2℃/cm温度梯度下的冻结不均匀冻胀系数在2.20~2.71范围。在试验的温度梯度范围内,不均匀冻胀系数与平均温度梯度呈线性关系,温度梯度越大,不均匀冻胀系数越大。为考虑围岩不均匀冻胀性的寒区隧道围岩冻胀力计算中不均匀冻胀系数的取值提供了试验依据,从而可合理地计算寒区隧道围岩冻胀力。  相似文献   

15.
针对毛细水迁移机制难以解释冻结缘及不连续分凝冰的形成,薄膜水迁移机制难以解释孔、裂隙间水迁移造成的不均匀冻胀,在毛细理论和冻结缘理论的基础上,通过对冻结缘区增加一组不同孔径的毛细管,对所有毛细管壁增加一层未冻水膜,构建出冻土的毛细-薄膜水分迁移统一模型。该模型从液压驱动角度分析了冻结大孔和未冻小孔中的液压、冰压以及驱动力分布,统一了冰透镜体暖端的液压驱动力与表面吸附力,并结合分凝冰形成机制,推导出分凝-冻结温度的控制方程。再根据表面吸附力、冻结缘渗透系数随分凝 冻结温度的变化律,在达西定律的基础上,给出了水分迁移速度的显式方程。最后,将Konrad冻胀试验中的主要参数代入该显式方程,发现理论计算值与试验值高度一致,验证了该模型的正确性。  相似文献   

16.
单向冻结过程中NaCl盐渍土水盐运移及变形机理研究   总被引:1,自引:0,他引:1  
冻结过程中的水盐迁移机理一直是冻土学研究的热点。通过单向冻结试验,研究了冻结过程中的水盐运移过程及土体变形。研究表明,在土体初始含盐量为0.8%的条件下,土体的冻胀变形显著减小,盐分的存在强烈影响着冻结缘处水分的集聚,盐对土体的冻胀具有抑制作用。在补给不同浓度NaCl溶液的条件下,土体初期的冻胀变形规律一致,随着盐分在冻结锋面处的累积,土体在后续冻结过程中水分迁移动力不足,从而使得土体冻胀过程中冻胀明显减小。基于溶液的性质并考虑盐分对土体冻结温度和未冻水含量的影响,建立了冻结过程中NaCl盐渍土水盐迁移规律及变形的计算模型,计算结果显示,计算模型能够很好地反映含盐土体在冻结过程中的温度、水分、盐分及变形的规律,从而为深入了解盐渍土在冻结过程中的变形机理提供理论参考。  相似文献   

17.
人工冻结法地基处理及应用研究   总被引:2,自引:0,他引:2  
柳利霞  侍倩 《地基处理》2004,15(1):49-52
本文介绍了冻结法进行地基处理的原理和特点,对于该技术中存在的如未冻水含量对冻结土强度的影响。冻结与解冻速度,冻胀融沉,冻融土的物理力学性质等问题进行了研究并给予了解答。可以通过增加负温来降低未冻水的含量以满足冻土的强度要求;通过控制冻结与解冻速度等措施,可以降低冻胀量与融沉量以及避免融陷的危险发生,采用注浆法可对冻融土体进行加固,提高其承载力。  相似文献   

18.
为研究寒区岩石在梯度温度场中补水条件下的冻胀变形规律,进行了单向冻结时开放条件下饱和砂岩冻胀试验。试验结果表明,单向冻结时开放条件下饱和岩石冻胀过程中,沿冻结方向的冻胀位移变化过程可分为冷缩阶段、原位冻胀阶段、分凝冻胀阶段3个阶段。分凝冻胀阶段冻结锋面趋于稳定,冻胀变形持续增长,与时间基本呈线性关系。此外,分凝冻胀阶段补水量换算的迁移水分凝冻胀位移与冻结方向冻胀位移比较接近。随着平均温度梯度增大,分凝冻胀变形速率增大,且分凝冰位置与平均温度梯度线性相关。然后,建立了考虑孔隙水原位冻胀与迁移水分凝冻胀的THM耦合冻胀模型。模型中,孔隙水原位冻胀计算基于未冻水含量,并引入约束系数表征岩石骨架对孔隙水冻胀约束程度;迁移水分凝冻胀计算基于分凝势理论,水分迁移速率与冻结缘处的温度梯度成正比。模型计算结果与试验结果对比表明,建立的THM耦合冻胀模型能够比较准确地计算单向冻结时开放条件下饱和岩石冻胀位移,并能够模拟出分凝冻胀时分凝冰层引起的位移突变及分凝冰位置,可用于寒区冻胀敏感性岩石开放条件下冻胀变形计算。  相似文献   

19.
冻胀量与冻胀力关系分析   总被引:2,自引:0,他引:2  
<正> 目前国内外不少从事冻土的研究人员在寻找冻胀量与冻胀力之间定量的函数关系.本文就该问题谈一下笔者的意见.将冻土地基看成是各向同性的均质介质,并近似认为地基土在冻胀过程中冻胀量与冻胀力是在冻结锋面上发生及发展.文中所说的冻胀量是指在无负荷条件下的自由冻胀量;所说的冻胀力是指在无位移条件下基础受到的冻胀力.土的冻胀性沿深度的分布是不均匀的,就季节冻土地区的地基其冻胀率(单位冻深  相似文献   

20.
寒区岩体工程含水孔(裂)隙中低温水冰相变会产生冻胀力与温度应力,岩体冻融损伤与断裂是由温度应力和孔(裂)隙中的冻胀力共同作用的结果。考虑温度应力对椭圆孔(裂)隙形变的影响,推导了椭圆孔(裂)隙中的冻胀力解析方程;基于最大拉应力准则,得到了低温热力耦合下椭圆孔(裂)隙周围最大拉应力与冻胀开裂角,建立了椭圆孔可简化为椭圆裂隙进行冻胀计算的临界条件;最后采用改进的等效热膨胀系数方法对隧道单裂隙围岩冻胀力与裂隙尖端应力场进行了数值分析。研究结果表明:(1)椭圆孔中的最大冻胀力与岩石的热膨胀性、裂隙倾角和裂隙长短轴比χ等因素有关;(2)长短轴比χ≥10的扁平椭圆孔可简化为裂隙进行计算分析,此时冻胀基本发生在裂隙尖端且尖端拉应力集中明显;(3)改进的等效热膨胀系数方法可以很好的模拟裂隙中的冻胀力与裂尖应力场。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号