共查询到20条相似文献,搜索用时 0 毫秒
1.
量子分类器在扰动攻击下的脆弱性是量子机器学习中的基本理论问题之一。量子分类器的脆弱性是指其随着量子系统规模增大而更容易因为一些微小的扰动而分类错误的性质。这种微小扰动也被称为量子对抗攻击,而如何生成尽可能小的扰动使得量子分类器失效仍是一个开放问题。针对这一问题,提出了一种新的量子对抗攻击生成算法——量子混淆算法。该算法利用量子分类器关于输入数据的梯度信息来生成扰动,从而使得已训练好的量子分类器失效。数值仿真结果表明,与已有的量子对抗攻击方法相比,量子混淆算法可以通过更小的扰动实现对抗攻击,为理解分类器的有效性和脆弱性提供了新的思路。 相似文献
2.
《吉林大学学报(工学版)》2018,(2):539-544
为提高经典k-means算法的计算效率,引入量子计算理论得到量子k-means算法。先将聚类数据和k个聚类中心制备成量子态,并行计算其相似度,接着利用相位估计算法将相似度信息保存到量子比特中,然后利用最小值查找量子算法查找最相似的聚类中心点。对比两种算法的复杂度可知,在一定条件下,相对经典算法而言,量子k-means算法的时间复杂度降低,空间复杂度得到指数级降低。 相似文献
3.
利用马科维茨投资组合优化问题和量子线性判别分析(quantum linear discriminant analysis, QLDA)的相似性,将马科维茨投资组合优化问题规约为量子线性判别分析的优化问题,并通过解决QLDA的技术厄米特链积(hermitian chain product, HCP)以及密度矩阵指数化算法(density matrix exponentiation, DME)来求得马科维茨均值方差模型中夏普率最大的最优解。量子连续投资组合优化方案相比于经典方案可以实现准指数加速。 相似文献
4.
5.
以传统朴素贝叶斯算法为基础,研究并提出一种高效、准确的量子模糊贝叶斯分类算法。首先将“模糊集合理论+朴素贝叶斯理论”交叉融合,定义模糊先验概率、模糊条件概率,将朴素贝叶斯推广至模糊朴素贝叶斯,构建模糊贝叶斯模型;其次,将“模糊贝叶斯模型+量子计算”交叉融合,将模糊数据集量子化(编码到量子态上)并设计量子线路,提出一种量子模糊朴素贝叶斯分类算法;最后,将该算法应用到鸢尾花数据集。仿真实验表明,与传统朴素贝叶斯分类算法相比,该算法具有较高的分类效率和准确率。 相似文献
6.
量子进化算法和免疫算法都是解决优化问题的强有力算法。在分析了量子进化算法搜索的特点和免疫算法的机理基础上,对它们进行比较,阐明了二者的不同特点,并通过仿真实例总结出它们在求解多峰值函数优化问题上各自的优缺点。 相似文献
7.
近年来,量子科技的发展突飞猛进,成为继云计算、大数据、人工智能、区块链技术之后的又一种新兴战略性技术,其中量子理论在智能优化领域的应用被证明是较为成功和富有前景的。该文从量子力学的视角综述了当前智能优化算法的研究进展。将量子力学在智能优化算法中的应用分成了两个方面:1) 将量子理论中的量子比特、量子门等概念应用于构造智能优化算法的相关研究,这些工作通过在智能优化算法中实现量子特性从而获得算法性能的提升;2) 利用薛定谔方程、波函数、叠加态等概念对智能优化算法进行建模,建立了智能优化算法的量子化描述方式,为利用量子力学对智能优化算法进行分析和研究提供了新的范式。量子理论在优化算法中的应用现状表明:建立在薛定谔方程上的智能优化算法理论具有完备的数学理论框架,并能导出优化算法的核心迭代操作,有望为优化算法建立统一数学物理模型。 相似文献
8.
在基于机器学习的流量预测算法中,详细研究了基于回归模型的预测算法,将机器学习算法引入到网络流量预测中,提出了不同的弱回归算予用来描述网络流量中的非线性特性。针对网络流量中的自相似特性,提出两种不同的机制,即用主成分分析作为预处理和为每一维特征保留一组权重分布;同时,针对实验中发现的过匹配现象提出一种自适应的权重更新准则。 相似文献
9.
求根问题是计算数论中的一个困难性问题,为了提高求根问题的求解效率和扩大量子计算的应用范围,对求根问题进行了量子算法的分析.在两大量子算法Shor算法和Grover算法的基础上,提出了2种解决求根问题的量子算法RF-Shor算法和RF-Grover算法.经分析,RF-Shor算法需要多项式规模的量子门资源,能以接近1的概率求出求根问题的所有解.在没有使用任何可提高搜索效率的经典策略的情况下,RF-Grover算法能在O ($ \\sqrt{M/k}$)步内以至少1/2的概率求出求根问题k 个解中的一个解. 相似文献
10.
陈科美 《西华大学学报(自然科学版)》2008,27(6)
针对量子进化算法全局搜索能力强而局部寻优能力弱的特点,提出一种基于模拟退火的量子进化算法。该方法将模拟退火算法引入到量子进化算法中,在采用量子进化算法进行解空间全局搜索的同时,用模拟退火算法加强局部寻优能力,以有效平衡算法的开采与勘探能力。采用著名的NP难组合优化问题———背包问题为例进行实验,结果表明:本文方法获得了比量子进化算法更好的解,证实了其有效性。 相似文献
11.
随机变量的均值估计问题一直是经典数据分析中研究的热点,均值估计算法的目的是通过对随机变量尽可能少地采样从而获得尽可能准确的均值估计值。量子计算作为一项革命性的技术,在一些问题上具有超越经典计算的优势。量子算法在均值估计问题上相对于经典算法具有平方加速,展现了量子计算的优越性。该文系统梳理了量子均值估计算法的发展历程,详细介绍了各阶段的算法流程及其优缺点,并对其主要应用场景进行了展示,最后讨论了量子均值估计算法的潜在发展方向。 相似文献
12.
基于ANFIS与量子BP神经网络(QBP)提出了一种基于自适应网络的量子模糊推理系统(ANQFIS)。不同于ANFIS,ANQFIS以量子门旋转的方式将模糊规则强度与QBP相结合,最后以量子态的测量概率作为输出,QBP的加入使得模型的输出准确率更高,且凭借量子计算的速度优越性提升了模型的计算速度。根据梯度下降法,给出了该系统中参数的学习算法。在仿真实验中,分别使用低维数据和高维数据作为数据集来训练模型,使用攻击算法生成对抗样本进行测试,结果表明ANQFIS在输出准确率、鲁棒性方面优于ANFIS与QBP。 相似文献
13.
针对蚁群算法在求解多任务联盟问题(multi-task coalition problem,MTCP)时存在的求解精度不高、迭代次数多的不足,利用量子计算的并行性,提出了一种求解多任务联盟问题的量子蚁群算法.首先,利用量子叠加态给出了基于Agent的量子编码,使1个Agent能占据空间中的2个位置;其次,为使旋转角获得合适的大小和方向,提出了一种基于信息素的自适应修正旋转角调整策略;最后,通过对量子编码进行观测,给出了基于量子态的蚂蚁寻优策略.实验结果表明,与已有的算法相比,该算法不仅能获得更高质量的解,而且收敛速度也有显著的提高. 相似文献
14.
为了解决传统量子进化算法用于复杂函数优化易陷入早熟和收敛速度慢等问题,将克隆算子引入到量子进化算法中,提出了一种新型的进化算法一量子克隆算法.该算法既借鉴了量子进化算法的高效并行性又利用克隆算子增加种群的多样性.提高了算法在解决函数优化问题的全局寻优能力.仿真结果表明,该算法优于传统的量子进化算法,较好地解决了复杂函数的优化问题. 相似文献
15.
基于量子差分进化算法在解决组合优化问题时表现出的计算效率及优化性能方面的优势,提出应用量子差分进化算法求解车辆路径问题,将量子比特解码为表示顾客顺序的实数量子染色体,设计了基于量子比特概率幅的差分交叉和变异算子以保持种群多样性,构建了动态量子旋转门进行变领域搜索,提出应用贪婪准则进行量子更新选择,将设计的算法应用于典型... 相似文献
16.
针对传统量子进化算法用于搜索某些适应度函数时稳定性和精确性差的问题,在计算量子旋转角时引入内分泌激素调节规律,使得量子旋转角根据种群进化代数及个体适应度值自适应调整,提出了一种基于内分泌激素调节机制的量子进化算法.并用于Schaffer函数寻优和三维人脑图像分割.仿真实验结果表明,该算法不仅保留了传统量子进化算法收敛速... 相似文献
17.
于振洋 《长春光学精密机械学院学报》2012,(2):173-175,168
本文针对现在流行的进化算法生成测试数据存在参数设置难、算法复杂度高、易陷入局部最优解等缺点,提出了一种应用于软件测试中的基于量子粒子群算法(QPSO)的测试数据自动生成算法。该算法是在粒子群(PSO)算法基础上引入量子理论的思想。解决了PSO算法搜索空间有限,容易陷入局部最优解的问题。通过具体实验证明,该方法是有效可行的,其效率也明显高于GA算法和PSO算法。 相似文献
18.
绝热量子计算模型是一种极具潜力的量子计算模型。报告一种基于约化乘法表的绝热量子整数分解方案及其在6量子~16量子比特内的数值仿真实验结果。这种方案采用约化的乘法表将整数分解问题转化为优化问题,从而将分解问题所需要的量子比特降低到n(n为待分解整数的二进制位宽)。实验结果表明新的绝热量子整数分解算法只需要多项式时间来求解此优化问题。 相似文献
19.
量子保密通信与量子计算作为战略性前沿技术,与国家安全和前瞻性技术战略关系密切,未来量子计算机的应用必将极大推动量子网络规模化应用.本文综述分析量子保密通信与量子计算的研究进展,重点介绍高性能量子密钥分发(quantum key distribution,QKD)终端、量子网络和量子计算领域在量子芯片器件和量子位操控等方... 相似文献
20.
为了提高量子粒子群算法(QPSO)的性能,利用差分进化对量子粒子群算法进行了优化.该优化算法(DE -QPSO)在粒子更新过程中,首先通过添加一个扰动来产生一个变异粒子,然后对变异粒子进行交叉操作产生新的试验粒子,最后对试验粒子进行选择操作,确定进入下一次迭代的个体.用5种标准测试函数对DE -QPSO、QPSO和 粒子群算法(PSO)的性能进行对比测试,结果表明DE-QPSO算法的性能明显优于PSO和QPSO算法,具有较好的应用价值. 相似文献