首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions of the beta subunit of the Oxytricha nova telomere binding protein with the telomeric DNA sequences, d(T4G4)2 and dT6(T4G4)2, have been investigated in vitro using Raman and fluorescence spectroscopies. Raman difference spectra show that the beta subunit binds to both d(T4G4)2 and dT6(T4G4)2 but promotes the formation of a parallel-stranded quadruplex only in dT6(T4G4)2, thus demonstrating the importance of the telomeric 5' tail for in vitro recognition and guanine quadruplex formation. While d(T4G4)2 is not a suitable substrate for quadruplex promotion by the beta subunit, the Raman spectra reveal other structural rearrangements of this DNA strand upon beta subunit binding, including changes in guanine glycosyl torsion angles from syn to anti and disruption of carbonyl hydrogen-bonding interactions. The conformation of d(T4G4)2 in the beta:d(T4G4)2 complex is suggested as a plausible intermediate along the pathway to formation of the parallel-stranded guanine quadruplex. Fluorescence band shifts indicate that at least one of the two tryptophans of the beta subunit is shielded from solvent as a consequence of DNA binding in both the beta:dT6(T4G4)2 and beta:d(T4G4)2 complexes. However, the Raman spectra of these complexes suggest no significant changes in the beta subunit secondary structure attendant with DNA binding. A model for beta subunit binding by Oxytricha telomeric DNA sequences and a mechanism for quadruplex formation are proposed. A key feature of this model is the use of a telomeric hairpin secondary structure as the recognition motif.  相似文献   

2.
We have applied NMR and molecular dynamics computations including intensity based refinement to define the structure of the d(G-G-G-C-T4-G-G-G-C) dodecanucleotide in 100 mM NaCl solution. The G-G-G-C sequence is of interest since it has been found as tandem repeats in the DNA sequence of human chromosome 19. The same G-G-G-C sequence is also seen as islands in adeno-associated virus, a human parvovirus, which is unique amongst eukaryotic DNA viruses in its ability to integrate site-specifically into a defined region of human chromosome 19. The d(G-G-G-C-T4-G-G-G-C) sequence forms a quadruplex in Na cation containing solution through head-to-tail dimerization of two symmetry-related stem-hairpin loops with adjacent strands antiparallel to each other around the quadruplex. The connecting T4 loops are of the lateral type, resulting in a quadruplex structure containing two internal G.G.G.G tetrads flanked by G.C.G.C tetrads. The G(anti).G(syn).G(anti).G(syn) tetrads are formed through dimerization associated hydrogen bonding alignments of a pair of Hoogsteen G(anti).G(syn) mismatch pairs, while the G(anti).C(anti).G(anti).C(anti) tetrads are formed through dimerization associated bifurcated hydrogen bonding alignments involving the major groove edges of a pair of Watson-Crick G.C base-pairs. The quadruplex contains two distinct narrow and two symmetric wide grooves with extensive stacking between adjacent tetrad planes. The structure of the quadruplex contains internal cavities that can potentially accommodate Na cations positioned between adjacent tetrad planes. Three such Na cations have been modeled into the structure of the d(G-G-G-C-T4-G-G-G-C) quadruplex. Finally, we speculate on the potential role of quadruplex formation involving G.G.G.G and G.C.G.C tetrads during the integration of the adeno-associated parvovirus into its target on human chromosome 19, both of which involve stretches of G-G-G-C sequence elements.  相似文献   

3.
The intercalation of the planar chromophoric moiety of nogalamycin between two base pairs of duplex DNA has been evidenced by means of low-dichroism measurements. The possible presence of specific binding sites for mogalamycin on DNA has been suggested by studies on the denaturation and renaturation of DNA complexed with nogalamycin. A clear evidence was obtained by investigating the interaction of nogalamycin with polydeoxyribonucleotides containing known, regularly repeating sequences, used as model compounds. The results obtained with these polymers and the DNA suggest that the segment containing both purine (A,G) anf pyrimidine (T,C) bases in alternate sequences is the preferential receptor site on the DNA. A decreasing affinity is exhibited by poly d(A--T)-poly d(A--T), poly d(G--C)-poly d(G--C) and poly dG-poly dC segments, in the order. The poly dA-poly dT sequence appears to be closed to the interaction of nogalamycin.  相似文献   

4.
Chlorella virus PBCV-1 DNA ligase seals nicked duplex DNA substrates consisting of a 5'-phosphate-terminated strand and a 3'-hydroxyl-terminated strand annealed to a bridging template strand, but cannot ligate a nicked duplex composed of two DNAs annealed on an RNA template. Whereas PBCV-1 ligase efficiently joins a 3'-OH RNA to a 5'-phosphate DNA, it is unable to join a 3'-OH DNA to a 5'-phosphate RNA. The ligase discriminates at the substrate binding step between nicked duplexes containing 5'-phosphate DNA versus 5'-phosphate RNA strands. PBCV-1 ligase readily seals a nicked duplex DNA containing a single ribonucleotide substitution at the reactive 5'-phosphate end. These results suggest a requirement for a B-form helical conformation of the polynucleotide on the 5'-phosphate side of the nick. Single base mismatches at the nick exert disparate effects on DNA ligation efficiency. PBCV-1 ligase tolerates mismatches involving the 5'-phosphate nucleotide, with the exception of 5'-A:G and 5'-G:A mispairs, which reduce ligase activity by two orders of magnitude. Inhibitory configurations at the 3'-OH nucleotide include 3'-G:A, 3'-G:T, 3'-T:T, 3'-A:G, 3'-G:G, 3'-A:C and 3'-C:C. Our findings indicate that Chlorella virus DNA ligase has the potential to affect genome integrity by embedding ribonucleotides in viral DNA and by sealing nicked molecules with mispaired ends, thereby generating missense mutations.  相似文献   

5.
The DNA bonding sites of two pyrrolo[1,4]benzodiazepine derivatives--tomaymycin (Tma) and anthramycin (Atm)--were identified by exonuclease III (exo III) digestion, lambda exonuclease (lambda exo) digestion, and UvrABC nuclease incision analysis. exo III digestion stalls 4-5 bases 3' to a drug-DNA adduct. While this method can recognize most of the Atm-and Tma-DNA modification sites, it is complicated in that exo III digestion is also stalled by certain unmodified sequences and by drug bound to the opposite strand. lambda exo digestion stalls 1-2 bases 5' to a drug-DNA adduct. The lambda exo method also recognizes most of the drug-DNA bonding sites and renders a cleaner background; however, it is also affected by opposite-strand drug bonding. Due to their intrinsic digestion polarities, these two exonucleases tend to be stalled by the drug-DNA adduct at one end of the DNA molecule. Purified UvrA, UvrB, and UvrC proteins acting together make dual incisions 6-8 bases 5' and 4 bases 3' to a Atm- or Tma-DNA adduct. This nuclease complex recognizes all the Tma- and Atm-DNA bonding sites identified by exonuclease digestion methods, and all the UvrABC incisions can be attributed to drug modifications in the incised DNA strand. The degree of UvrABC nuclease incision increases with increasing drug concentrations for DNA modification. Using the UvrABC incision method, we have identified the sequence preference of Tma- and Atm-DNA adduct formation in three DNA fragments, and we have found that these two drugs have different preferred sites for adduction. Both Tma- and Atm-DNA bonding is strongly influenced by the 5' and 3' neighboring bases; the orders of preferred 5' and 3' bases for Tma are A > G, T > C, and A, C > G, T, and for Atm the orders are A > G > T > C and A > G > T, C. The preferred triplets for Tma bonding are -AGA- > -GGC-, -TGC-, and AGC- and for Atm are -AGA-, -AGG- > -GGA-, -GGG-.  相似文献   

6.
Experimental studies involving the carcinogenic aromatic amine 2-(acetylamino)fluorene (AAF) have afforded two acetylated DNA adducts, the major one bound to C8 of guanine and a minor adduct bound to N2 of guanine. The minor adduct may be important in carcinogenesis because it persists, while the major adduct is rapidly repaired. Primer extension studies of the minor adduct have indicated that it blocks DNA synthesis, with some bypass and misincorporation of adenine opposite the lesion [Shibutani, S., and Grollman, A.P. (1993) Chem. Res. Toxicol. 6, 819-824]. No experimental structural information is available for this adduct. Extensive minimized potential energy searches involving thousands of trials and molecular dynamics simulations were used to study the conformation of this adduct in three sequences: I, d(C1-G2-C3-[AAF]G4-C5-G6-C7).d(G8-C9-G10-C11-G12-C13-G14+ ++); II, the sequence of Shibutani and Grollman, d(C1-T2-A3-[AAF]G4-T5-C6-A7).d(T8-G9-A10-C11-T12-A13-G14); and III, which is the same as II but with a mismatched adenine in position 11, opposite the lesion. AAF was located in the minor groove in the low-energy structures of all sequences. In the lowest energy form of the C3-[AAF]G4-C5 sequence I, the fluorenyl rings point in the 3' direction along the modified strand and the acetyl in the 5' direction. These orientations are reversed in the second lowest energy structure of this sequence, and the energy of this structure is 1.4 kcal/mol higher. Watson Crick hydrogen bonding is intact in both structures. In the two lowest energy structures of the A3-[AAF]G4-T5 sequence II, the AAF is also located in the minor groove with Watson-Crick hydrogen bonding intact. However, in the lowest energy form, the fluorenyl rings point in the 5' direction and the acetyl in the 3' direction. The energy of the structure with opposite orientation is 5.1 kcal/mol higher. In sequence III with adenine mismatched to the modified guanine, the lowest energy form also had the fluorenyl rings oriented 5' in the minor groove with intact Watson-Crick base pairing. However, the mispaired adenine adopts a syn orientation with Hoogsteen pairing to the modified guanine. These results suggest that the orientation of the AAF in the minor groove may be DNA sequence dependent. Mobile aspects of favored structures derived from molecular dynamics simulations with explicit solvent and salt support the essentially undistorting nature of this lesion, which is in harmony with its persistence in mammalian systems.  相似文献   

7.
Extracts of Drosophila embryos and adults have been found to catalyze highly efficient DNA mismatch repair, as well as repair of 1- and 5-bp loops. For mispairs T.G and G.G, repair is nick dependent and is specific for the nicked strand of heteroduplex DNA. In contrast, repair of A.A, C.A, G.A, C.T, T.T, and C.C is not nick dependent, suggesting the presence of glycosylase activities. For nick-dependent repair, the specific activity of embryo extracts was similar to that of extracts derived from the entirely postmitotic cells of young and senescent adults. Thus, DNA mismatch repair activity is expressed in Drosophila cells during both development and aging, suggesting that there may be a function or requirement for mismatch repair throughout the Drosophila life span. Nick-dependent repair was reduced in extracts of animals mutant for the mei-9 gene. mei-9 has been shown to be required in vivo for certain types of DNA mismatch repair, nucleotide excision repair (NER), and meiotic crossing over and is the Drosophila homolog of the yeast NER gene rad1.  相似文献   

8.
We have determined the mutational specificity of 8-methoxypsoralen photoaddition at the endogenous adenine phosphoribosyltransferase gene of Chinese hamster ovary cells hemizygous for this locus. In addition, the distribution of 8-methoxypsoralen photo-adducts was resolved in vitro at the DNA sequence level, and compared with the observed site specificity for mutation. Among 27 mutants characterized, all were single base changes at AT base pairs: 16 A:T-->T:A, six A:T-->C:G, four A:T-->G:C and one -T frameshift. All these vents were targeted to potential sites of photoaddition. The vast majority of these sites were also detectable in vitro, suggesting that 8-methoxypsoralen plus UVA-induced mutational hotspots may be damage hotspots. Furthermore 26/27 mutations occurred at crosslinkable 5'TpA sites, supporting the notion that 8-methoxypsoralen biadducts rather than monoadducts are major premutagenic lesions in mammalian cells. Since 90% of our mutation collection could have resulted from damage on the non-transcribed strand, it appears that photoadducted thymine residues on the transcribed strand of the adenine phosphoribosyltransferase gene may be preferentially repaired. We therefore suggest a model for mutagenesis, induced by psoralen biadducts, based on the preferential incision of biadducts followed by translesion synthesis past modified T bases persisting on the non-transcribed strand.  相似文献   

9.
An N-acetyl-2-aminofluorene (AAF) modified deoxyoligonucleotide duplex, d(C1-C2-A3-C4-[AAF-G5]-C6-A7-C8-C9).d(G10-G11-T12-G13-C14-++ +G15-T16-G17-G18), was studied by one- and two-dimensional NMR spectroscopy. Eight of the nine complementary nucleotides form Watson-Crick base pairs, as shown by NOEs between the guanine imino proton and cytosine amino protons for G.C base pairs or by an NOE between the thymine imino proton and adenine H2 proton for A.T base pairs. The AAF-G5 and C14 bases show no evidence of complementary hydrogen bond formation to each other. The AAF-G5 base adopts a syn conformation, as indicated by NOEs between the G5 imino proton and the A3-H3' and A3-H2'/H2" protons and by NOEs between the fluorene-H1 proton of AAF and the G5-H1' or C6-H1' proton. The NOEs from the C4-H6 proton to C4 sugar protons are weak, and thus the glycosidic torsion angle in this nucleotide is not well defined by these NMR data. The remaining bases are in the anti conformation, as depicted by the relative magnitude of the H8/H6 to H2' NOEs when compared to the H8/H6 to H1' NOEs. The three base pairs on each end of the duplex exhibit NOEs characteristic of right-handed B-form DNA. Distance restraints obtained from NOESY data recorded at 32 degrees C using a 100-ms mixing time were used in conformational searches by molecular mechanics energy minimization studies. The final, unrestrained, minimum-energy conformation was then used as input for an unrestrained molecular dynamics simulation. Chemical exchange cross peaks are observed, and thus the AAF-9-mer exists in more than a single conformation on the NMR time scale. The NMR data, however, indicate the presence of a predominant conformation (> or = 70%). The structure of the predominant conformation of the AAF-9-mer shows stacking of the fluorene moiety on an adjacent base pair, exhibiting features of the base-displacement [Grunberger, D., Nelson, J. H., et al. (1970) Proc. Natl. Acad. Sci. U.S.A. 66, 488-494] and insertion-denaturation models [Fuchs, R.P.P., & Daune, M. (1971) FEBS Lett. 14, 206-208], while the distal ring of the fluorene moiety protrudes into the minor groove.  相似文献   

10.
A combined NMR-molecular dynamics approach has been applied to determine the solution structure of a truncated analogue of the Bombyx mori telomeric d(TTAGG) single repeat sequence in Na+ cation-containing aqueous solution. The two-fold symmetric four-stranded d(TAGG) quadruplex contains two adjacent G(syn).G(syn).G(anti).G(anti) G-tetrads sandwiched between novel (T.A).A triads with individual strands having both a parallel and antiparallel neighbour around the quadruplex. The (T.A).A triad represents the first experimental verification of a base triad alignment which constitutes a key postulate in the recently proposed model of triad-DNA. Further, the (T.A).A triad is generated by positioning an A residue through hydrogen bonding in the minor groove of a Watson-Crick T.A base pair and includes a T-A platform related to an A-A platform recently observed in the structure of the P4-P6 domain of the Tetrahymena self splicing group I ribozyme. The novel architecture of the truncated Bombyx mori quadruplex structure sets the stage for the design and potential identification of additional base tetrads and triads that could participate in pairing alignments of multi-stranded DNA structures during chromosome association and genetic recombination.  相似文献   

11.
Previous experiments on DNA sequence context reported that base modification, replication, and repair are affected by the nature of neighbor bases. We now report that repair by mammalian alkylpurine-DNA-N-glycosylases (APNG) of 15-mer oligonucleotides with a central 1,N6-ethenoadenine (epsilonA), flanked by 5' and 3' tandem bases, is also highly sequence dependent. Oligonucleotides with the central sequences -GGepsilonAGG- or -CCepsilonACC- are repaired 3-5-fold more efficiently than those containing -AAepsilonAAA- or -TTepsilonATT- when using human or mouse APNG. Melting curves of the same duplexes showed that oligomers with G.C/C. G neighbors were less denatured than those with A.T/T.A neighbors at 37 degreesC. This sequence-dependent difference in denaturation correlates with the relative thermodynamic stability of oligomers with G.C/C.G or A.T/T.A neighbors. The dependence of repair on thermal stability was confirmed by enzyme reactions performed over 0-45 degreesC. Under these conditions, repair of epsilonA flanked by G.C/C.G was dramatically increased at 37 degreesC with continuous increase up to 45 degreesC, in contrast to that with flanking A.T/T. A pairs, which was in agreement with the degree of denaturation of these duplexes. These results indicate that the thermodynamic stability conferred by base pairs flanking epsilonA plays an essential role in maintaining the integrity of the duplex structure which is necessary for repair.  相似文献   

12.
Gel retardation studies and other experiments indicate that DNA sequences containing the d(GA4T4C)n motif are curved, whereas those of identical composition but with a reverse sequence polarity, the d(GT4A4C)n motif, are straight. Hydroxyl radical cleavage experiments show that d(GA4T4C)n shows a unique signature, whereas d(GT4A4C)n behaves normally. To explain these results at a molecular level, molecular dynamics (MD) simulations were performed on the DNA duplexes d(G5-(GA4T4C)2-C5) and d(G5-(GT4A4C)2-C5) to 3.0 and 2.5 ns, respectively. The MD simulations are based on the Cornell force field implemented in the AMBER 4.1 modeling package and performed in a neutral solution of anionic DNA with K+, Cl- and Mg2+ at concentrations roughly comparable to a ligase buffer. Long range interactions were treated by the particle mesh Ewald method. Analysis of the results shows that the calculated dynamical structure of d(G5-(GA4T4C)2-C5) exhibits strong gross curvature, consistent with the observed behavior. The most significant locus of curvature in the MD structure is found at the central C15-G16 step, with an average roll angle of 12.8(+/-6.40)deg. The d(G5-(GT4A4C)2-C5) MD structure exhibited significantly less gross curvature. Analysis of results indicates that the reduction in gross curvature in the d(G5-(GT4A4C)2-C5) trajectory originates from the effect of the T10-A11 and T20-A21 steps, which showed average roll angles of 12.5(+/-5)deg. These three steps, T10-A11, C15-G16 and T20-A21, are half-helix turns away from one another, and their contributions to concerted bending cancel out. The A-tracts in the MD structure are essentially straight. The dynamical structure of d(G5-(GA4T4C)2-C5) exhibited minor groove deformation comprised of expansion at the 5' end of A-tracts and progressive narrowing towards the 3' end, consistent with and elaborating the interpretation of hydroxyl radical chemical probing results.  相似文献   

13.
The interactions of the related zinc finger proteins WT1 and EGR1 with DNA have been investigated using a quantitative binding assay. A recombinant peptide containing the four zinc fingers of WT1 binds to the dodecamer DNA sequence GCG-TGG-GCG-TGT with an apparent dissociation constant (Kd) of (1.14 +/- 0.09) x 10(-9) M under conditions of 0.1 M KCl, pH 7.5, at 22 degrees C. Under the same conditions, a recombinant peptide containing the three zinc fingers of EGR1 binds to the dodecamer sequence, the first nine bases comprising the EGR consensus binding site, with an apparent Kd of (3.55 +/- 0.24) x 10(-9) M. The nature of the equilibrium binding of each peptide to DNA was investigated as a function of temperature, pH, monovalent salt concentration, and divalent salt concentration. The interaction of WT1 with DNA is an entropy-driven process, while the formation of the EGR1-DNA complex is favored by enthalpy and entropy. The DNA binding activities of both proteins have broad pH optima centered at pH 8.0. The binding of both proteins to DNA shows similar sensitivity to ionic strength, with approximately 7.7 +/- 0.8 ion pairs formed in the EGR1-DNA complex and 9.2 +/- 1.8 ion pairs formed in the WT1-DNA complex. Results of measuring the effects of point mutations in the DNA binding site on the affinity of WT1 and EGR1 indicates a significant difference in the optimal binding sites: for EGR1, the highest affinity binding site has the sequence GNG-(T/G)GG-G(T/C)G, while for WT1 the highest affinity binding site has the sequence G(T/C)G-(T/G)GG-GAG-(T/C)G(T/C).  相似文献   

14.
Production by N-nitroso compounds of O6-alkylguanine (O6-alkylG) in DNA directs the misincorporation of thymine during DNA replication, leading to G:C to A:T transition mutations, despite the fact that DNA containing O6-alkylG:T base pairs is less stable than that containing O6-alkylG:C pairs. We have examined the kinetics of incorporation by Klenow fragment (KF) of Escherichia coli DNA polymerase I of thymine (T) and of cytosine (C) opposite O6-MeG in the template DNA strand. Both T and C were incorporated opposite O6-MeG much slower than nucleotides forming regular A:T or G:C base pairs. Using various concentrations of dTTP, dCTP, or their phosphorothioate (Sp)-dNTP alpha S analogues, or a mixture of dTTP and dCTP, the progress of incorporation of a single nucleotide in a single catalytic cycle of a preformed KF-DNA complex was measured (pre-steady-state kinetics). The results were consistent with the kinetic scheme (Kuchta, R. D., Benkovic, P., & Benkovic, S. J. (1988) Biochemistry 27, 6716-6725): (1) binding of dNTP to polymerase-DNA; (2) conformational change in polymerase; (3) formation of phosphodiester between the dNTP and the 3'-OH of the primer; (4) conformational change of polymerase; (5) release of pyrophosphate. The results were analyzed mathematically to identify the steps at which the rate constants differ significantly between the incorporation of T and C. The only significant difference was the 5-fold difference in the rates of formation of the phosphodiester bond (for dTTP, kforward = 3.9 s-1 and kback = 1.9 s-1; for dCTP, kforward = 0.7 s-1 and kback = 0.9 s-1). These pre-steady-state progress curves were biphasic with a rapid initial burst followed by an apparently steady-state rise. Deconvolution of these curves gave direct evidence for the importance of the conformational change after polymerization by showing that the curves represented the sum of the rapid accumulation of the product of step 3 followed by the slow conversion of that to the product of step 5 (because of the rapidity of the release of pyrophosphate there was no significant accumulation of the product of step 4). The equilibrium constants for each step suggest that the greatest change in the Gibbs free energy occurs at the conformational change after polymerization and that while the formation of the phosphodiester bond to T is slightly exothermic, that to C is slightly endothermic.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
A direct repeat recombination assay between SUP4 heteroalleles detects unrepaired heteroduplex DNA (hDNA) as sectored colonies. The frequency of unrepaired heteroduplex is dependent on the mismatch and is highest in a construct that generates C:C or G:G mispairs and lowest in one that generates T:G or C:A mispairs. In addition, unrepaired hDNA increases for all mismatches tested in pms1 mismatch repair-deficient strains. These results support the notion that hDNA is formed across the SUP4 repeats during the recombination event and is then subject to mismatch repair. The effects of various repair and recombination defective mutations on this assay were examined. Unrepaired heteroduplex increases significantly only in rad52 mutant strains. In addition, direct repeat recombination is reduced 2-fold in rad52 mutant strains, while in rad51, rad54, rad55 and rad57 mutants direct repeat recombination is increased 3-4-fold. Mutations in the excision repair gene, RAD1, do not affect the frequency of direct repeat recombination. However, the level of unrepaired heteroduplex is slightly decreased in rad1 mutant strains. Similar to previous studies, rad1 rad52 double mutants show a synergistic reduction in direct repeat recombination (35-fold). Interestingly, unrepaired heteroduplex is reduced 4-fold in the double mutants. Experiments with shortened repeats suggest that the reduction in unrepaired heteroduplex is due to decreased hDNA tract length in the double mutant strain.  相似文献   

16.
Complete libraries of oligonucleotides were used as substrates for Thermus thermophilus DNA ligase, on a M13mp18 ssDNA template. A 17mer primer was used to start a polymerisation process. Ladders of ligation products were analysed by gel electrophoresis. Octa-, nona- and decanucleotide libraries were compared. Nonanucleotides were optimum for polymerisation and up to 15 monomers were ligated. The fidelity of incorporation was studied by sequencing 28 clones (2268 bases) of nonanucleotide polymers, 12 monomers in length. Of the ligated monomers, 79% were the correct complementary sequence. In a total of 57 (2.5%) mispaired bases, there was a strong bias to G.T, G.A, G.G and A.G mismatches. Of the mismatches, 86% were found to be purines on the incoming oligonucleotide, of which 71% were G. There is evidence for clustering of mismatches within specific 9mers and at specific positions within these 9mers. The most frequent mismatches were at the 5'-terminus of the oligonucleotide, followed by the central position. We suggest that sequence selection was imposed by the ligase and not just by base pairing interactions. The ligase directs polymerisation in the 3' to 5' direction which we propose is linked to its role in lagging strand DNA replication.  相似文献   

17.
A cell line that produces an autoantibody specific for DNA quadruplex structures has been isolated and cloned from a hybridoma library derived from 3-month-old nonimmunized autoimmune, immunodeficient "viable motheaten" mice. This antibody has been tested extensively in vitro and found to bind specifically to DNA quadruplex structures formed by two biologically relevant sequence motifs. Scatchard and nonlinear regression analyses using both one- and two-site models were used to derive association constants for the antibody-DNA binding reactions. In both cases, quadruplexes had higher association constants than triplex and duplex molecules. The anti-quadruplex antibody binds to the quadruplex formed by the promoter-region-derived oligonucleotide d(CGCG4GCG) (Ka = 3.3 x 10(6) M-1), and has enhanced affinity for telomere-derived quadruplexes formed by the oligonucleotides d(TG4) and d(T2G4T2G4T2G4T2G4) (Ka = 5.38 x 10(6) and 1.66 x 10(7) M-1, respectively). The antibody binds both types of quadruplexes but has preferential affinity for the parallel four-stranded structure. In vitro radioimmunofilter binding experiments demonstrated that purified anti-DNA quadruplex antibodies from anti-quadruplex antibody-producing tissue culture supernatants have at least 10-fold higher affinity for quadruplexes than for triplex and duplex DNA structures of similar base composition and length. The antibody binds intramolecular DNA triplexes formed by d(G4T3G4T3C4) and d(C4T3G4T3G4), and the duplex d(CGCGCGCGCG)2 with an affinities of 6. 76 x 10(5), 5.59 x 10(5), and 8.26 x 10(5) M-1, respectively. Competition experiments showed that melted quadruplexes are not effective competitors for antibody binding when compared to native structures, confirming that the quadruplex is bound structure-specifically. To our knowledge, this is the first immunological reagent known to specifically recognize quadruplex structures. Subsequent sequence analysis demonstrates homologies between the antibody complementarity determining regions and sequences from Myb family telomere binding proteins, which are hypothesized to control cell aging via telomeric DNA interactions. The presence of this antibody in the autoimmune repertoire suggests a possible linkage between autoimmunity, telomeric DNA binding proteins, and aging.  相似文献   

18.
The Escherichia coli NarI restriction enzyme recognition site 5'G1G2C3G4C5C63' is a mutational hotspot for -2 deletions in E. coli plasmid pBR322, resulting in the sequence 5'GGCC3' when G4 is modified by the aromatic amine N-2-(acetyl)aminofluorene (AAF) [Burnouf, D., Koehl, P., and Fuchs, R. P. P. (1995) Proc. Natl. Acad. Sci. U.S.A. 86, 4147-4151] even though each G shows similar reactivity [Fuchs, R. P. P. (1984) J. Mol. Biol. 177, 173-180]. Modification at G4 by the related aromatic amine 2-aminofluorene (AF), which lacks the acetyl group of AAF, can also cause -2 deletions, but at a lower frequency [Bichara, M., and Fuchs, R. P. P. (1985) J. Mol. Biol. 183, 341-351]. A specific mechanism has been proposed to explain the double-base frameshifts in the NarI sequence in which the GC deletion results from a slipped mutagenic intermediate formed during replication [Schaaper, B. M., Koffel-Schwartz, N., and Fuchs, R. P. P. (1990) Carcinogenesis 11, 1087-1095]. We address the following key questions in this study. Why does AAF modification dramatically increase the mutagenicity at the NarI G4 position, and why does AAF enhance the mutagenicity more than AF? We studied two intermediates which model replication at one arm of a fork, using a fragment of DNA modified by AF or AAF at G4 in the NarI sequence: Intermediate I can be converted into intermediate II by misalignment. Elongation of intermediate I leads to error-free translesion synthesis, while elongation of intermediate II leads to a -2 frameshift mutation. Minimized potential energy calculations were carried out using the molecular mechanics program DUPLEX to investigate the conformations of the AF and AAF adducts at G4 in these two intermediates. We find that the slipped mutagenic intermediate is quite stable relative to its normally extended counterpart in the presence of AF and AAF in an abnormal syn orientation of the damaged base. An enhanced probability of elongation from a stable slipped structure rather than a properly aligned one would favor increased -2 frameshift mutations. Furthermore, AAF-modified DNA has a greater tendency to adopt the syn orientation than AF because of its greater bulk, which could explain its greater propensity to cause -2 deletions in the NarI sequence.  相似文献   

19.
Ultraviolet circular dichroism spectra are reported for the oligonucleotide d(A15G15) in aqueous solutions containing 5 mM MgCl2 at several temperatures and in the presence of partially complementary oligonucleotides. Oligonucleotides with several consecutive terminal guanine residues self-associate to form aggregates, called frayed wires, that consist of integer numbers of strands. A "stem" is formed through interactions between the guanine residues of the associated oligonucleotides, whereas the adenine "arms" remain single stranded. Upon subtracting the circular dichroism spectrum of d(A15) from that of d(A15G15), one obtains a spectrum that closely resembles previously published spectra of poly(G). Subtracting spectra measured at temperatures between 10 degrees C and 60 degrees C reveals the resultant spectra to be independent of temperature, consistent with the extreme thermal stability observed for the aggregated structures. Upon the addition of d(T15) to the solution, complexes with the adenine portion of the d(A15G15) frayed wires are formed. Subtraction of d(A15):d(T15) spectra measured at several temperatures from those of the d(A15G15):d(T15) does not significantly alter the spectrum of the guanines. The helix-coil transition temperature of d(A15):d(T15) duplex is identical to that of the unbinding of d(T15) from d(A15G15):d(T15) complexes. Experiments using oligonucleotides in which the adenines were replaced with sequences of bases yielded similar results. By varying the length of the nonguanine tract, it is shown that the solubility of the complexes increases with the length of the nonguanine region of the oligonucleotide.  相似文献   

20.
The interaction of the 11-mer oligodeoxypyrimidine d(TCTTCTUTCCT) with the 17 bp duplex d(CGCTAGAAGAAAGGACG).d(CGTCCUTTCTTCTAGCG) in forming an intermolecular DNA triplex has been examined in solution by surface plasmon resonance (SPR), UV thermal denaturation, circular dichroism (CD), and NMR methods. Thermodynamic data were also acquired for the shorter 15 bp target duplex d(CGCTAGAAGAAAGGA). d(TCCUTTCTTCTAGCG), which forms a 3' flush-ended parallel triplex. CD titrations at pH 5 gave a triplex --> (duplex + strand) dissociation constant Kd of 0.5 microM at 15 degreesC and approximately 2 microM at 25 degreesC for both the 11-15.15 and 11-17.17 systems, in agreement with analysis of the UV melting data and a direct calorimetric measurement. In contrast, the "apparent" Kd value determined by SPR was 10-20-fold smaller. The rate constant for dissociation (kd) of the third strand from the triplex was found to be approximately 0.0002 s-1 at 25 degreesC by SPR. The rate constant for exchange between the triplex and duplex states determined by NMR was approximately 2 s-1 at 40 degreesC. The dissociation kinetics measured by SPR are considerably underestimated, which largely accounts for the poor estimation of Kd using this technique. Extensive 1H NMR assignments were obtained for both the 17 bp DNA duplex and the triplex. Large changes in chemical shifts were observed in the purine strand of the host duplex, but only small shift changes were induced in the complementary pyrimidine strand. Dramatic differences in shifts were observed for the G and A residues, especially in the minor groove, consistent with only small, localized conformational changes in the underlying duplex. The magnitude of the shift changes decreased to baseline within one base of the 3' triplex-duplex junction and over two to three bases at the 5' junction. Chemical shift changes at the 5' junction suggest small conformational anomalies at this site. COSY and NOESY spectra indicate that the nucleotides are in the "S" domain in both the triplex and duplex states. These data rule out major conformation changes at the triplex-duplex boundaries. NOEs between pyrimidines in the third strand and those in the duplex showed proximity for these bases in the major groove, which could be ascribed to buckling of the Hoogsteen bases out of the plane of the Watson-Crick base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号