首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
吕微  蒋剑春  徐俊明  李静 《化工进展》2012,31(6):1280-1284
研究了脂肪酸环氧-开环-酯化三步反应制备聚酯多元醇,比较了3种不同碘值的脂肪酸原料制备的聚酯多元醇及其聚氨酯泡沫(PUF)性能。脂肪酸碘值越高多元醇的羟值也越高:1#、2#和3#聚酯多元醇羟值分别为:261.47 mgKOH/g、370.28 mgKOH/g和434.49 mgKOH/g。3种多元醇的相对分子量为600~2000。3种泡沫的压缩和弯曲性能与泡沫密度成正比。泡沫SEM分析显示:羟值较高的多元醇泡沫2#和3#泡沫孔结构较规则,以正五边形和正六边形居多;1#泡沫泡孔不规则,易变形。对3种泡沫的TG-DSC、DTG分析结果表明:3种泡沫的热分解温度都约为300 ℃,具有较好热稳定性。  相似文献   

2.
常压下采用催化剂一步醇解废旧聚酯(PET)工艺制备聚酯多元醇,并采用物理发泡方式用该聚酯多元醇制备了硬质聚氨酯泡沫塑料,达到废旧PET的循环利用。以催化醇解得到聚酯多元醇的羟值、酸值和黏度为指标,筛选催化剂用量、醇解剂用量和醇解时间为主要因素,通过响应面法优化得到催化醇解废旧PET的最佳工艺条件,即:质量分数0.3%(占PET的质量,下同)的Sb2O3作为解聚的催化剂、质量分数100%的二甘醇为醇解剂,醇解反应时间为2.5 h,通过实验验证表明该条件可靠,实际得到的聚酯多元醇羟值503.9 mgKOH/g,酸值2.4 mgKOH/g,室温黏度1310 mPa·s,以该聚酯多元醇为原料制备硬质聚氨酯泡沫的导热系数为0.02~0.03 W/(m·K),密度为40~50 kg/m3,表明通过该方法实现废旧PET的循环利用是可行的,并提高了其循环利用价值。  相似文献   

3.
以国产苯酐聚酯多元醇为主要原料制备了组合聚醚,再与多异氰酸酯反应,制备了阻燃型聚氨酯硬质泡沫。讨论了苯酐聚酯多元醇、硅油及发泡剂等因素对泡沫阻燃性的影响。结果表明,该组合聚醚与多异氰酸酯反应,制得的阻燃型聚氨酯硬质泡沫,其氧指数在28以上,压缩强度为300kPa,达到了国家标准GB/T8624-1997中B2级氧指数的要求。  相似文献   

4.
由江苏省化工研究所承担研制的“低成本芳烃聚酯多元醇(PET残渣制)及其制品硬质聚氨酯泡沫”和“汽车专用聚氨酯硬质泡沫塑料及其施工工艺”两项目于1996年11月13日在南京通过由化工部主持的鉴定。“低成本芳烃聚酯多元醇(PET残渣制)及其制品硬质聚氨酯泡沫”项目深入地研究了以PET残渣为原料的芳烃聚酯多元醇的制备工艺、聚酯多元醇组合料的贮存稳定性及制品聚氨酯硬质泡沫的性能。芳烃聚酯多元醇经批量生产考核,技术成熟可靠,产品质量稳定,达到国外先进水平。以此制备的硬质聚氨酯泡沫除了具有聚醚型硬泡的一般性能外,还具有…  相似文献   

5.
由江苏省化工研究所承担研制的“低成本芳烃聚酯多元醇(PET残渣制)及其制品硬质聚氨酯泡沫”项目于1996年11月13日在南京通过化工部主持的鉴定。该项目深入地研究了以PET残渣为原料的芳烃聚酯多元醇的制备工艺、聚酯多元醇组合料的贮存稳定性及制品聚氨酯硬质泡沫性能。芳烃聚酯多元酬经指生产考核,技术成熟可靠,产品质量稳定,达到国外先进水平。以此制备的硬质聚氨酯泡沫除了具有聚醚型硬泡的一般性能外,还具有泡孔细腻、韧性好等优点。鉴定的专家认为该项目研究思路清晰新颖,内容丰富充实。芳烃聚酯多元醇的制备成功,使得硬泡…  相似文献   

6.
采用预聚体法制备聚酯型聚氨酯泡沫,主要考查了多元醇的种类和用量对聚酯型聚氨酯泡沫的影响。结果发现:最佳的聚酯多元醇的分子量应该控制在2000g/mol~3000g/mol;苯酐聚酯多元醇的加入,提高了泡沫的拉伸强度和压陷硬度,明显降低泡沫的弹性,导致泡沫外观不佳,在预聚体法制备聚氨酯泡沫时,不适合使用苯酐聚酯多元醇;聚醚多元醇的加入能够显著降低预聚体的粘度,当聚醚多元醇EP-330N含量在10%~20%时,使用预聚体法制备聚氨酯泡沫的操作更加方便,性能相对影响不大,能够满足一般的生产要求。  相似文献   

7.
用对苯二甲酸、苯酐、二元醇、三元醇等多元醇为原料制备新型芳香族聚酯多元醇,考察了聚酯多元醇酸值、羟值与其醇酸摩尔比的关系,以及酸值与反应时间的关系,并将其用于制备硬质聚氨酯泡沫塑料,讨论了新型聚酯多元醇对硬质聚氨酯泡沫塑料的性能影响。  相似文献   

8.
以聚合MDI和聚醚多元醇为原料,优选发泡剂,加入改性超细煤粉作为填充剂,制备出硬质聚氨酯泡沫材料。通过测试煤粉填充聚氨酯泡沫材料的表观密度、回弹率、压缩强度和氧指数进行分析。结果表明,发泡剂H用量0.1 g时制备的聚氨酯泡沫压缩强度、回弹率较好;加入KH550和KH560改性的超细煤粉,随着煤粉用量增加,聚氨酯泡沫的压缩强度、氧指数得到明显改善。当KH560改性煤粉用量为15份时,聚氨酯性能最优,压缩强度达到0.40MPa,氧指数达到21%,回弹率为5.4%,密度为0.064 g/cm~3。  相似文献   

9.
以废聚酯材料、季戊四醇、豆油酸、苯酐等为主要原料制备了高固体分聚酯多元醇树脂,再与高固体分聚氨酯树脂配制而成高固体聚酯型聚氨酯漆.讨论了酯化工艺、催化剂种类、升温速率和醇解温度对醇解反应的影响,并分析了经济效益.结果表明,采用二月桂酸二丁基锡为催化剂,以在240~250℃下用甘油醇解、酯化,制备的高固体分聚酯多元醇树脂固体分为(80±2)%,羟值为(100±10)mgKOH/g.该树脂与聚氨酯树脂组成的双组分聚酯型聚氨酯漆操作方便、工艺稳定、质量达标、经济效益显著,为废聚酯的回收利用找到了新的途径,又为高档漆提供了价廉的原料,增加了社会效益.  相似文献   

10.
以粗甘油为原料,通过热化学转化合成一种甘油基多元醇,将其用于硬质聚氨酯泡沫塑料的制备,并考察了甘油基多元醇含量对聚氨酯泡沫性能的影响。研究表明,在采用自制催化剂、200℃反应7 h的优化条件下,可制得羟值244 mgKOH/g、酸值1.0 mgKOH/g、黏度600 mPa·s的甘油基多元醇。甘油基多元醇替代25%(质量分数)石油基聚醚多元醇时,得到的聚氨酯硬泡与对照的硬泡性能相近。  相似文献   

11.
用含有小分子醇的交联剂和催化剂使废旧聚氨酯(PU)硬泡进行降解能够获得多元醇,将降解料与聚醚多元醇、催化剂和发泡剂共混以制备白料,然后与黑料异氰酸酯混合均匀,得到再生PU硬泡。通过对降解产物的黏度、羟值以及获得的再生PU硬泡材料的密度、强度、吸水率、热稳定性、扫描电子显微镜、红外光谱和热失重等进行测试分析,得出了催化剂添加量对废旧PU材料回收再利用的影响因素。结果表明,催化剂(KOH)用量为0.9 g时废旧PU的降解效果最好,获得的再生PU硬泡的密度为37.6 kg/cm3,压缩强度为164.2 kPa,热导率为0.015 24 W/(m·K),吸水率为0.429 5 %。  相似文献   

12.
开发环境友好型聚氨酯是目前聚氨酯(polyurethane,PU)泡沫塑料领域的热点课题。在PU中引入大豆分离蛋白质(soy protein isolate,SPI),采用阻燃聚醚制备了环境友好型阻燃高回弹聚氨酯软泡。研究了SPI的不同添加方式及用量对聚氨酯软泡物理、力学、阻燃和生物降解性能的影响。结果表明,SPI以添加的方式而不是替代聚醚的方式加入软泡性能更好;少量添加SPI可以提高PU软泡的开孔率、密度、压陷硬度、舒适因子、回弹率和断裂伸长率,对压缩永久变形率、拉伸强度和极限氧指数影响不大。SPI改变了PU的硬段结构,可以有效促进聚氨酯泡沫的生物降解。  相似文献   

13.
以一种多元胺类副产物为起始剂,制备了一种叔胺基聚多元醇。它具有粘度低,反应活性高,与其它多元醇相窝性好,价格低等优点,它用于硬质聚氨酯泡沫塑料制备时,使泡沫的强度,泡孔结构等得到明显改善,在聚氨醌泡生产领域具有良好的发展前途。  相似文献   

14.
Rosin‐based polyester polyols were synthesized from a rosin–maleic anhydride adduct, diethylene glycol, and ethylene glycol with and without adding adipic acid and phthelic anhydride, in the presence of catalyst. Rigid polyurethane (PU) foams were prepared with these rosin‐based polyols and compared with foam made with an industrial polyester Daltolac? P744. The experimental results show that the foaming behavior for the foams prepared from such rosin‐based polyols is similar to that of industrial products, but their 10% compression strength, both parallel and vertical to foaming rise direction, is higher and the dimensional stability at 100 and ?30°C is similar or somewhat better than that of a comparable system. Furthermore, the rosin‐modified PU foams exhibit even lower thermal conductivity and much higher activation energies during the pyrolysis process. All these unique physical properties of the rosin‐modified rigid PU foams were correlated to the structures of these PU foams. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 598–604, 2002; DOI 10.1002/app.10312  相似文献   

15.
以制备纤维乙醇得到的酶解玉米秸秆残渣为原料,采用碱性乙醇法提取木质素,然后用聚乙二醇/甘油溶液将木质素进行液化得到木质素基多元醇,并以此液化产物代替部分聚醚多元醇用于聚氨酯泡沫的合成。结果表明:碱性乙醇法得到的木质素提取率为93.5%,木质素质量分数达到94.1%;在PEG-400/丙三醇液化体系中,木质素液化率高达99.5%,液化产物羟值为360 mg KOH/g;在聚氨酯合成中,木质素液化溶液对聚醚多元醇的替代量可以达质量分数47%,所得聚氨酯泡沫产品的芯密度和压缩强度分别为48.6 kg/m3和212 k Pa,满足工业聚氨酯硬泡的国家标准。  相似文献   

16.
Environmental concerns continue to pose the challenge to replace petroleum-based products with renewable ones completely or at least partially while maintaining comparable properties. Herein, rigid polyurethane (PU) foams were prepared using soy-based polyol for structural and thermal insulation applications. Cell size, density, thermal resistivity, and compression force deflection (CFD) values were evaluated and compared with that of petroleum-based PU foam Baydur 683. The roles of different additives, that is, catalyst, blowing agent, surfactants, and different functionalities of polyol on the properties of fabricated foam were also investigated. For this study, dibutyltin dilaurate was employed as catalyst and water as environment friendly blowing agent. Their competitive effect on density and cell size of the PU foams were evaluated. Five different silicone-based surfactants were employed to study the effect of surface tension on cell size of foam. It was also found that 5 g of surfactant per 100 g of polyol produced a foam with minimum surface tension and highest thermal resistivity (R value: 26.11 m2·K/W). However, CFD values were compromised for higher surfactant loading. Additionally, blending of 5 g of higher functionality soy-based polyol improved the CFD values to 328.19 kPa, which was comparable to that of petroleum-based foam Baydur 683.  相似文献   

17.
The low-flame retardancy properties of pure rigid polyurethane (PU) foams hindered its practical application in many cases for the safety and environmental concern. Although rigid PU foams with flame retardants can achieve standard of fire resistance, addition of flame retardants in PU can worsen its mechanical properties, enlarge production cost, and induce safety problems. Therefore, green reactive flame-retardant polyether polyols (GPP) have been considered as one of the best solutions. In this work, the GPP by the ring-opening polymerization of the self-made environmentally friendly melamine resin (EFMR) with propylene oxide are synthesized with their hydroxyl number of 390 ~ 420 mg KOH/g, and the structure of GPP product was identified by Fourier transform infrared spectroscopy and nuclear magnetic resonance. The flame-retardant rigid polyurethane foams (RPUFs) were successfully prepared with GPP as the polyol, the results showed that the addition of GPP can greatly improve the thermal stability and flame retardancy of the RPUFs prepared. The RPUF were prepared by fully GPP with 30.4% of limiting oxygen index and 350 kpa of compressive strength. These properties are qualified for commercial utilization. Therefore, this GPP provides great prospect in the development of specified flame-retardant PU materials.  相似文献   

18.
用酚醛-三聚氰胺聚合物改性的聚醚多元醇(PFMP-Polyol)制备硬质聚氨酯泡沫,考察了PFMP-Polyol的用量对泡沫的发泡性能、物理机械性能的影响。结果表明,在HCFC-141b发泡体系中,PFMP-Polyol的加入可提高发泡反应速度,使泡沫泡孔细腻、均匀,泡沫的压缩强度、尺寸稳定性均有明显的提高;用于环戊烷发泡体系中,当PFMP-Polyol的质量分数占聚醚多元醇的30%、模压泡密度在34.2 kg/m~3,压缩强度(水平方向)为254.2 kP,导热系数可降低至20.8 mW/(m·K)。  相似文献   

19.
This study investigated the physical properties of water‐blown rigid polyurethane (PU) foams made from VORANOL®490 (petroleum‐based polyether polyol) mixed with 0–50% high viscosity (13,000–31,000 cP at 22°C) soy‐polyols. The density of these foams decreased as the soy‐polyol percentage increased. The compressive strength decreased, decreased and then increased, or remained unchanged and then increased with increasing soy‐polyol percentage depending on the viscosity of the soy‐polyol. Foams made from high viscosity (21,000–31,000 cP) soy‐polyols exhibited similar or superior density‐compressive strength properties to the control foam made from 100% VORNAOL® 490. The thermal conductivity of foams containing soy‐polyols was slightly higher than the control foam. The maximal foaming temperatures of foams slightly decreased with increasing soy‐polyol percentage. Micrographs of foams showed that they had many cells in the shape of sphere or polyhedra. With increasing soy‐polyol percentage, the cell size decreased, and the cell number increased. Based on the analysis of isocyanate content and compressive strength of foams, it was concluded that rigid PU foams could be made by replacing 50% petroleum‐based polyol with a high viscosity soy‐polyol resulting in a 30% reduction in the isocyanate content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The effects of crude glycerol impurities on acid‐catalyzed biomass liquefaction by crude glycerol were investigated. Salts (i.e., NaCl and Na2SO4) decreased biomass conversion ratios and negatively affected the properties of polyols produced. Regression models were developed and validated as appropriate for describing the relationships between organic impurities and biomass conversion ratios and between organic impurities and the hydroxyl number of polyols. Polyols produced from crude glycerol containing 0–45% organic impurities showed the hydroxyl number varying from 1301 to 700 mg KOH/g, acid number from 19 to 28 mg KOH/g, viscosity from 2.4 to 29.2 Pa s, and molecular weight (Mw) from 244 to 550 g/mol. Crude glycerol containing 40–50 wt % of organic impurities was suitable to produce polyols with suitable properties for rigid and/or semi‐rigid polyurethane (PU) foam applications. The produced PU foams showed density and compressive strength comparable to those derived from petrochemical solvent‐based liquefaction processes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40739.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号