首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel approach for the fabrication of multifunctional microspheres integrating several advantages of mesoporous, luminescence, and temperature responses into one single entity is reported. First, the hollow mesoporous silica capsules are fabricated via a sacrificial template route. Then, Gd2O3:Eu3+ luminescent nanoparticles are incorporated into the internal cavities to form rattle‐type mesoporous silica nanocapsules by an incipient‐wetness impregnation method. Finally, the rattle‐type capsules serve as a nanoreactor for successfully filling temperature‐responsive hydrogel via photoinduced polymerization to form the multifunctional composite microspheres. The organic–inorganic hybrid microspheres show a red emission under UV irradiation due to the luminescent Gd2O3:Eu3+ core. The in vitro cytotoxicity tests show that the samples have good biocompatibility, which indicates that the nanocomposite could be a promising candidate for drug delivery. In addition, flow cytometry and confocal laser scanning microscopy (CLSM) confirm that the sample can be effectively taken up by SKOV3 cells. For in vitro magnetic resonance imaging (MRI), the sample shows the promising spin‐lattice relaxation time (T1) weighted effect and could potentially apply as a T1‐positive contrast agent. This composite drug delivery system (DDS) provides a positive temperature controlled “on‐off”drug release pattern and the drug, indomethacin (IMC), is released fast at 45 °C (on phase) and completely shut off at 20 °C (off phase). Meanwhile Gd2O3:Eu3+ plays an important role as the luminescent tag for tracking the drug loading and release process by the reversible luminescence quenching and recovery phenomenon. These results indicate that the obtained multifunctional composite has the potential to be used as a smart DDS for biomedical applications.  相似文献   

2.
Hollow tin dioxide (SnO2) microspheres were synthesized by the simple heat treatment of a mixture composed of tin(IV ) tetrachloride pentahydrate (SnCl4·5H2O) and resorcinol–formaldehyde gel (RF gel). Because hollow structures were formed during the heat treatment, the pre‐formation of template and the adsorption of target precursor on template are unnecessary in the current method, leading to simplified synthetic procedures and facilitating mass production. Field‐emission scanning electron microscopy (FE‐SEM) images showed 1.7–2.5 μm sized hollow spherical particles. Transmission electron microscopy (TEM) images showed that the produced spherical particles are composed of a hollow inner cavity and thin outer shell. When the hollow SnO2 microspheres were used as a lithium‐battery anode, they exhibited extraordinarily high discharge capacities and coulombic efficiency. The reported synthetic procedure is straightforward and inexpensive, and consequently can be readily adopted to produce large quantities of hollow SnO2 microspheres. This straightforward approach can be extended for the synthesis of other hollow microspheres including those obtained from ZrO2 and ZrO2/CeO2 solid solutions.  相似文献   

3.
Carbon‐encapsulated Li3VO4 is synthesized by a facile environmentally benign solid‐state method with organic metallic precursor VO(C5H7O2)2 being chosen as both V and carbon sources yielding a core–shell nanostructure with lithium introduced in the subsequent annealing process. The Li3VO4 encapsulated with carbon presents exceeding rate capability (a reversible capability of 450, 340, 169, and 106 mAh g?1 at 0.1 C, 10 C, 50 C, and 80 C, respectively) and long cyclic performance (80% capacity retention after 2000 cycles at 10 C) as an anode in lithium‐ion batteries. The superior performance is derived from the structural features of the carbon‐encapsulated Li3VO4 composite with oxygen vacancies in Li3VO4, which increase surface energy and could possibly serve as a nucleation center, thus facilitating phase transitions. The in situ generated carbon shell not only facilitates electron transport, but also suppresses Li3VO4 particle growth during the calcination process. The encouraging results demonstrate the significant potential of carbon encapsulated Li3VO4 for high power batteries. In addition, the simple generic synthesis method is applicable to the fabrication of a variety of electrode materials for batteries and supercapacitors with unique core–shell structure with mesoporous carbon shell.  相似文献   

4.
Porous and sub‐micrometer tubes made of textured GaN nanoparticles have been synthesized by an in situ chemical reaction and characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) and Raman spectroscopies. The in situ reaction involves thermal decomposition and nitridation of 1D gallium oxyhydroxide (GaOOH) at temperatures in the range of 700–900 °C. The 1D shape of the precursor GaOOH is maintained in the resultant GaN tubes. The GaN nanocrystals (estimated to be about 15 nm in size) are found to be highly oriented with respect to each other in the tube structure, with the [110] GaN direction parallel to the tube axis. The growth mechanism of the tube structure has also been studied. β‐Ga2O3 is found to be an intermediate phase between the starting GaOOH precursor and the final GaN product. The growth mechanism involves decomposition of GaOOH, which produces β‐Ga2O3 tubes with hollow interiors, and nitridation of β‐Ga2O3, which leads to growth of textured GaN nanocrystals. Based on the growth mechanism, tubular structures with either quasi‐circular or rectangular cross section are selectively synthesized by controlling the heating rate and calcination temperature. This in situ chemical reaction method provides a new route for synthesizing 1D hollow nanostructures.  相似文献   

5.
Novel, 3D hierarchical Co3O4 twin‐spheres with an urchin‐like structure are produced successfully on the large scale for the first time by a solvothermal synthesis of cobalt carbonate hydroxide hydrate, Co(CO3)0.5(OH)·0.11H2O, and its subsequent calcination. The morphology of the precursor, which dominates the structure of the final product, evolves from nanorods to sheaf‐like bundles, to flower‐like structures, to dumbbell‐like particles, and eventually to twin‐spheres, accompanying a prolonged reaction time. A multistep‐splitting growth mechanism is proposed to understand the formation of the 3D hierarchical twin‐spheres of the precursor, based on the time effect on the morphologies of the precursor. The 3D hierarchical Co3O4 twin‐spheres are further used as electrode materials to fabricate supercapacitors with high specific capacitances of 781, 754, 700, 670, and 611 F g?1 at current densities of 0.5, 1, 2, 4, and 8 A g?1, respectively. The devices also show high charge‐discharge reversibility with an efficiency of 97.8% after cycling 1000 times at a current density of 4 A g?1.  相似文献   

6.
MoSe2 grown on N,P‐co‐doped carbon nanosheets is synthesized by a solvothermal reaction followed with a high‐temperature calcination. This composite has an interlayer spacing of MoSe2 expanded to facilitate sodium‐ion diffusion, MoSe2 immobilized on carbon nanosheets to improve charge‐transfer kinetics, and N and P incorporated into carbon to enhance its interaction with active species upon cycling. These features greatly improve the electrochemical performance of this composite, as compared to all the controls. It presents a specific capacity of 378 mAh g?1 after 1000 cycles at 0.5 A g?1, corresponding to 87% of the capacity at the second cycle. Ex situ Raman spectra and high‐resolution transmission electron microscopy images confirm that it is element Se, rather than MoSe2, formed after the charging process. The interaction of the active species with modified carbon is simulated using density functional theory to explain this excellent stability. The superior rate capability, where the capacity at 15 A g?1 equals ≈55% of that at 0.5 A g?1, could be associated with the significant contribution of pseudocapacitance. By pairing with homemade Na3V2(PO4)3/C, this composite also exhibits excellent performances in full cells.  相似文献   

7.
A novel kind of rattle‐type hollow magnetic mesoporous sphere (HMMS) with Fe3O4 particles encapsulated in the cores of mesoporous silica microspheres has been successfully fabricated by sol–gel reactions on hematite particles followed by cavity generation with hydrothermal treatment and H2 reduction. Such a structure has the merits of both enhanced drug‐loading capacity and a significant magnetization strength. The prepared HMMSs realize a relatively high storage capacity up to 302 mg g?1 when ibuprofen is used as a model drug, and the IBU–HMMS system has a sustained‐release property, which follows a Fick's law.  相似文献   

8.
For large‐scale and high‐throughput production of organic solar cells (OSCs), liquid processing of the functional layers is desired. We demonstrate inverted bulk‐heterojunction organic solar cells (OSCs) with a sol–gel derived V2O5 hole‐extraction‐layer on top of the active organic layer. The V2O5 layers are prepared in ambient air using Vanadium(V)‐oxitriisopropoxide as precursor. Without any post‐annealing or plasma treatment, a high work function of the V2O5 layers is confirmed by both Kelvin probe analysis and ultraviolet photoelectron spectroscopy (UPS). Using UPS and inverse photoelectron spectroscopy (IPES), we show that the electronic structure of the solution processed V2O5 layers is similar to that of thermally evaporated V2O5 layers which have been exposed to ambient air. Optimization of the sol gel process leads to inverted OSCs with solution based V2O5 layers that show power conversion efficiencies similar to that of control devices with V2O5 layers prepared in high‐vacuum.  相似文献   

9.
Two contrasting approaches, involving either polymer‐mediated or fluoride‐mediated self‐transformation of amorphous solid particles, are described as general routes to the fabrication of hollow inorganic microspheres. Firstly, calcium carbonate and strontium tungstate hollow microspheres are fabricated in high yield using sodium poly(4‐styrenesulfonate) as a stabilizing agent for the formation and subsequent transformation of amorphous primary particles. Transformation occurs with retention of the bulk morphology by localized Ostwald ripening, in which preferential dissolution of the particle interior is coupled to the deposition of a porous external shell of loosely packed nanocrystals. Secondly, the fabrication process is extended to relatively stable amorphous microspheres, such as TiO2 and SnO2, by increasing the surface reactivity of the solid precursor particles. For this, fluoride ions, in the form of NH4F and SnF2, are used to produce well‐defined hollow spheroids of nanocrystalline TiO2 and SnO2, respectively. Our results suggest that the chemical self‐transformation of precursor objects under morphologically invariant conditions could be of general applicability in the preparation of a wide range of nanoparticle‐based hollow architectures for technological and biomedical applications.  相似文献   

10.
Maintaining structural stability and alleviating the intrinsic poor conductivity of conversion‐type reaction anode materials are of great importance for practical application. Introducing void space and a highly conductive host to accommodate the volume changes and enhance the conductivity would be a smart design to achieve robust construction; effective electron and ion transportation, thus, lead to prolonged cycling life and excellent rate performance. Herein, uniform yolk–shell FeP@C nanoboxes (FeP@CNBs) with the inner FeP nanoparticles completely protected by a thin and self‐supported carbon shell are synthesized through a phosphidation process with yolk–shell Fe2O3@CNBs as a precursor. The volumetric variation of the inner FeP nanoparticles during cycling is alleviated, and the FeP nanoparticles can expand without deforming the carbon shell, thanks to the internal void space of the unique yolk–shell structure, thus preserving the electrode microstructure. Furthermore, the presence of the highly conductive carbon shell enhances the conductivity of the whole electrode. Benefiting from the unique design of the yolk–shell structure, the FeP@CNBs manifests remarkable lithium/potassium storage performance.  相似文献   

11.
A simple and convenient Ostwald ripening route to the morphology‐ and phase‐controlled preparation of hollow Sb2S3 microspheres is developed. The hollow spheres are clusters of smaller microspheres if orange amorphous Sb2S3 colloid is used as the precursor, whereas, if starting from the yellow precursor, the products are regular hollow spheres. By selecting appropriate experimental conditions for ripening, the phase of the hollow Sb2S3 microspheres can be controlled. Amorphous and orthorhombic hollow spheres are prepared by ripening the colloidal precursors at ambient temperature and in an autoclave, respectively. The closed shell of hollow Sb2S3 spheres can be easily eroded by hydrochloric acid to form an open structure. By the in situ reduction of adsorbed Ag+ on the surface and interior of the hollow spheres, Ag nanoparticles are introduced into them, to form functional metal–semiconductor composites, the weight content of which is controlled by regulating the concentration of the Ag+ source and the adsorption time. The composite structures composed of Ag nanoparticles and hollow Sb2S3 spheres exhibit a remarkably enhanced absorption covering the UV and visible regions of the electromagnetic spectrum. A study of the photocatalytic properties of the composite structures demonstrates that exposure to both UV and visible light enables them to induce the rapid decomposition of 2‐chlorophenol. The degradation rate increases with a larger weight content of Ag in the composite structure.  相似文献   

12.
This article summarizes our most recent studies on improved Li+‐intercalation properties in vanadium oxides by engineering the nanostructure and interlayer structure. The intercalation capacity and rate are enhanced by almost two orders of magnitude with appropriately fabricated nanostructures. Processing methods for single‐crystal V2O5 nanorod arrays, V2O5·n H2O nanotube arrays, and Ni/V2O5·n H2O core/shell nanocable arrays are presented; the morphologies, structures, and growth mechanisms of these nanostructures are discussed. Electrochemical analysis demonstrates that the intercalation properties of all three types of nanostructure exhibit significantly enhanced storage capacity and rate performance compared to the film electrode of vanadium pentoxide. Addition of TiO2 to orthorhombic V2O5 is found to affect the crystallinity, microstructure, and possible interaction force between adjacent layers in V2O5, and subsequently leads to enhanced Li+‐intercalation properties in V2O5. The amount of water intercalated in V2O5 is found to have a significant influence on the interlayer spacing and electrochemical performance of V2O5·n H2O. A systematic electrochemical study has demonstrated that the V2O5·0.3 H2O film has the optimal water content and exhibits the best Li+‐intercalation performance.  相似文献   

13.
A new mechanism for the transformation of nanostructured metal selenides into uniquely structured metal oxides via the Kirkendall effect, which results from the different diffusion rates of metal and Se ions and O2 gas, is proposed. SnSe nanoplates are selected as the first target material and transformed into SnO2 hollow nanoplates by the Kirkendall effect. SnSe‐C composite powder, in which SnSe nanoplates are attached or stuck to amorphous carbon microspheres, transforms into several tens of SnO2 hollow nanoplates by a thermal oxidation process under an air atmosphere. Core–shell‐structured SnSe‐SnSe2@SnO2, SnSe2@SnO2, Se‐SnSe2@SnO2, and Se@SnO2 and yolk–shell‐structured Se@void@SnO2 intermediates are formed step‐by‐step during the oxidation of the SnSe nanoplates. The uniquely structured SnO2 hollow nanoplates have superior cycling and rate performance for Li‐ion storage. Additionally, their discharge capacities at the 2nd and 600th cycles are 598 and 500 mA h g‐1, respectively, and the corresponding capacity retention measured from the 2nd cycle is as high as 84%.  相似文献   

14.
Vanadium pentoxide (V2O5) has received considerable attention owing to its potential application in energy storage with high specific capacity (294 mAh g?1). However, the development of V2O5 cathodes has been limited by the intrinsically low electrical conductivity and slow electrochemical kinetics resulting in a significant capacity decay. In this article, in order to overcome the issues, V2O5 nanospheres and multiwalled carbon nanotubes (MWCNTs) are used to fabricate layer‐by‐layer composited paper as the cathode, which is prepared via electrostatic interaction and vacuum filtration by alternating the positively charged V2O5 nanospheres and the negatively charged terminated MWCNT solutions. As a result, the V2O5 nanospheres are closely intercalated between the adjacent MWCNT layers leading to minimize the disadvantage voids and enhance the overall conductivity of the composited electrode, which exhibits an enhanced cycling durability as well as improved rate capability.  相似文献   

15.
A yolk‐shell‐structured carbon@void@silicon (CVS) anode material in which a void space is created between the inside silicon nanoparticle and the outer carbon shell is considered as a promising candidate for Li‐ion cells. Untill now, all the previous yolk‐shell composites were fabricated through a templating method, wherein the SiO2 layer acts as a sacrificial layer and creates a void by a selective etching method using toxic hydrofluoric acid. However, this method is complex and toxic. Here, a green and facile synthesis of granadilla‐like outer carbon coating encapsulated silicon/carbon microspheres which are composed of interconnected carbon framework supported CVS nanobeads is reported. The silicon granadillas are prepared via a modified templating method in which calcium carbonate was selected as a sacrificial layer and acetylene as a carbon precursor. Therefore, the void space inside and among these CVS nanobeads can be formed by removing CaCO3 with diluted hydrochloric acid. As prepared, silicon granadillas having 30% silicon content deliver a reversible capacity of around 1100 mAh g?1 at a current density of 250 mA g?1 after 200 cycles. Besides, this composite exhibits an excellent rate performance of about 830 and 700 mAh g?1 at the current densities of 1000 and 2000 mA g?1, respectively.  相似文献   

16.
On p. 2766, Qinshan Zhu and co‐workers report on multishell hollow Cu2O microspheres that are synthesized by a facile and one‐pot solvothermal route. A two‐step organization process, in which hollow microspheres of Cu2(OH)3NO3 are formed first followed by reduction to Cu2O by glutamic acid, leads to the special multishell and hollow microstructures. Interestingly, a Cu2O gas sensor fabricated with the multishell microspheres shows a much higher sensitivity to ethanol than solid Cu2O microspheres. Hierarchical assembly of hollow microstructures is of great scientific and practical value and remains a great challenge. This paper presents a facile and one‐pot synthesis of Cu2O microspheres with multilayered and porous shells, which were organized by nanocrystals. The time‐dependent experiments revealed a two‐step organization process, in which hollow microspheres of Cu2(OH)3NO3 were formed first due to the Ostwald ripening and then reduced by glutamic acid, the resultant Cu2O nanocrystals were deposited on the hollow intermediate microspheres and organized into finally multishell structures. The special microstructures actually recorded the evolution process of materials morphologies and microstructures in space and time scales, implying an intermediate‐templating route, which is important for understanding and fabricating complex architectures. The Cu2O microspheres obtained were used to fabricate a gas sensor, which showed much higher sensitivity than solid Cu2O microspheres.  相似文献   

17.
2D conjugated metal‐organic frameworks (2D c‐MOFs) are emerging as a novel class of conductive redox‐active materials for electrochemical energy storage. However, developing 2D c‐MOFs as flexible thin‐film electrodes have been largely limited, due to the lack of capability of solution‐processing and integration into nanodevices arising from the rigid powder samples by solvothermal synthesis. Here, the synthesis of phthalocyanine‐based 2D c‐MOF (Ni2[CuPc(NH)8]) nanosheets through ball milling mechanical exfoliation method are reported. The nanosheets feature with average lateral size of ≈160 nm and mean thickness of ≈7 nm (≈10 layers), and exhibit high crystallinity and chemical stability as well as a p‐type semiconducting behavior with mobility of ≈1.5 cm2 V?1 s?1 at room temperature. Benefiting from the ultrathin feature, the nanosheets allow high utilization of active sites and facile solution‐processability. Thus, micro‐supercapacitor (MSC) devices are fabricated mixing Ni2[CuPc(NH)8] nanosheets with exfoliated graphene, which display outstanding cycling stability and a high areal capacitance up to 18.9 mF cm?2; the performance surpasses most of the reported conducting polymers‐based and 2D materials‐based MSCs.  相似文献   

18.
Noble metal nanostructures are grown inside hollow mesoporous silica microspheres using “ship‐in‐a‐bottle” growth. Small Au seeds are first introduced into the interior of the hollow microspheres. Au nanorods with synthetically tunable longitudinal plasmon wavelengths and Au nanospheres are obtained through seed‐mediated growth within the microspheres. The encapsulated Au nanocrystals are further coated with Pd or Pt shells. The microsphere‐encapsulated bimetallic core/shell nanostructures can function as catalysts. They exhibit high catalytic performance and their stability is superior to that of the corresponding unencapsulated core/shell nanostructures in the catalytic oxidation of o‐phenylenediamine with hydrogen peroxide. Therefore, these hollow microsphere‐encapsulated metal nanostructures are promising as recoverable and efficient catalysts for various liquid‐phase catalytic reactions.  相似文献   

19.
A novel and general strategy to fabricate monodisperse hollow supraparticles (SPs) via selective chemical oxidation is developed. Core‐shell SPs made of semiconductor nanocrystals (NCs) are first obtained by an in situ assembly method. Subsequently, the cores can be selectively removed by preferential oxidation with dilute H2O2, resulting in formation of monodisperse hollow SPs. The structural parameters of the products, such as size, shell thickness, and composition, are tailored easily. The hollow structures achieved from CdSe/CdS core‐shell SPs possess high fluorescence quantum yields and a large Stokes shift, the latter is remarkably different from that of conventional organic dyes and quantum dots. In addition to simple hollow structures, rattle‐type nanostructures composed of semiconductor SPs or noble metal‐semiconductor hybrids are also prepared, exemplifying the versatility of the proposed strategy.  相似文献   

20.
A facile two‐step strategy involving a polyol method and subsequent thermal annealing treatment is successfully developed for the large‐scale preparation of ZnCo2O4 various hierarchical micro/nanostructures (twin mcrospheres and microcubes) without surfactant assistance. To the best of our knowledge, this is the first report on the synthesis of ZnCo2O4 mesoporous twin microspheres and microcubes. More significantly, based on the effect of the reaction time on the morphology evolution of the precursor, a brand‐new crystal growth mechanism, multistep splitting then in situ dissolution recrystallization accompanied by morphology and phase change, is first proposed to understand the formation of the 3D twin microshperes, providing new research opportunity for investigating the formation of novel micro/nanostructures. When evaluated as anode materials for lithium‐ion batteries (LIBs), ZnCo2O4 hierarchical microstructures exhibit superior capacity retention, excellent cycling stability at the 5 A g?1 rate for 2000 cycles. Surprisingly, the ZnCo2O4 twin microspheres show an exceptionally high rate capability up to the 10 A g?1 rate. It should be noted that such super‐high rate performance and cycling stability at such high charge/discharge rates are significantly higher than most work previously reported on ZnCo2O4 micro/nanostructures and ZnCo2O4‐based heterostructures. The ZnCo2O4 3D hierarchical micro/nanostructures demonstrate the great potential as negative electrode materials for high‐performance LIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号