共查询到20条相似文献,搜索用时 15 毫秒
1.
Layer‐by‐Layer Conjugated Extension of a Semiconducting Polymer for High‐Performance Organic Field‐Effect Transistor 下载免费PDF全文
Mi Jang Se Hyun Kim Han‐Koo Lee Yun‐Hi Kim Hoichang Yang 《Advanced functional materials》2015,25(25):3833-3839
A donor–acceptor (D–A) semiconducting copolymer, PDPP‐TVT‐29, comprising a diketopyrrolopyrrole (DPP) derivative with long, linear, space‐separated alkyl side‐chains and thiophene vinylene thiophene (TVT) for organic field‐effect transistors (OFETs) can form highly π‐conjugated structures with an edge‐on molecular orientation in an as‐spun film. In particular, the layer‐like conjugated film morphologies can be developed via short‐term thermal annealing above 150 °C for 10 min. The strong intermolecular interaction, originating from the fused DPP and D–A interaction, leads to the spontaneous self‐assembly of polymer chains within close proximity (with π‐overlap distance of 3.55 Å) and forms unexpectedly long‐range π‐conjugation, which is favorable for both intra‐ and intermolecular charge transport. Unlike intergranular nanorods in the as‐spun film, well‐conjugated layers in the 200 °C‐annealed film can yield more efficient charge‐transport pathways. The granular morphology of the as‐spun PDPP‐TVT‐29 film produces a field‐effect mobility (μ FET) of 1.39 cm2 V?1 s?1 in an OFET based on a polymer‐treated SiO2 dielectric, while the 27‐Å‐step layered morphology in the 200 °C‐annealed films shows high μ FET values of up to 3.7 cm2 V?1 s?1. 相似文献
2.
Impact of Polystyrene Oligomer Side Chains on Naphthalene Diimide–Bithiophene Polymers as n‐Type Semiconductors for Organic Field‐Effect Transistors 下载免费PDF全文
Tadanori Kurosawa Yu‐Cheng Chiu Yan Zhou Xiaodan Gu Wen‐Chang Chen Zhenan Bao 《Advanced functional materials》2016,26(8):1261-1270
A series of naphthalene diimide‐based conjugated polymers are prepared with various molar percentage of low molecular weight polystyrene (PS) oligomer of narrow polydispersity as the side chain. The PS side chains are incorporated through preparation of a macromonomer by chain termination of living anionic polymerization. The effects of the PS side chains amount (0–20 mol%) versus overall sidechain on the electrical properties of the resulting polymers as n‐type polymer semiconductors in field‐effect transistors are investigated. We observe that all the studied polymers show similarly high electron mobility (≈0.2 cm2 V?1 s?1). Importantly, the polymers with high PS side chain content (20 mol%) show a significantly improved device stability under ambient conditions, when compared to the polymers at lower PS content (0–10 mol%). By comparing this observation to the physical blending of the conjugated polymer with PS, we attribute the improved stability to the covalently attached PS side chains potentially serving as a molecular encapsulating layer around the conjugated polymer backbone, rendering it less susceptible to electron traps such as oxygen and water molecules. 相似文献
3.
4.
Wen‐Ya Lee Joon Hak Oh Sabin‐Lucian Suraru Wen‐Chang Chen Frank Würthner Zhenan Bao 《Advanced functional materials》2011,21(21):4173-4181
High charge carrier mobility solution‐processed n‐channel organic thin‐film transistors (OTFTs) based on core‐chlorinated naphthalene tetracarboxylic diimides (NDIs) with fluoroalkyl chains are demonstrated. These OTFTs were prepared through a solution shearing method. Core‐chlorination of NDIs not only increases the electron mobilities of OTFTs, but also enhances their air stability, since the chlorination in the NDI core lowers the lowest unoccupied molecular orbital (LUMO) levels. The air‐stability of dichlorinated NDI was better than that of the tetrachlorinated NDIs, presumably due to the fact that dichlorinated NDIs have a denser packing of the fluoroalkyl chains and less grain boundaries on the surface, reducing the invasion pathway of ambient oxygen and moisture. The devices of dichlorinated NDIs exhibit good OTFT performance, even after storage in air for one and a half months. Charge transport anisotropy is observed from the dichlorinated NDI. A dichlorinated NDI with ?CH2C3F7 side chains reveals high mobilities of up to 0.22 and 0.57 cm2 V?1 s?1 in parallel and perpendicular direction, respectively, with regard to the shearing direction. This mobility anisotropy is related to the grain morphology. In addition, we find that the solution‐shearing deposition affects the molecular orientation in the crystalline thin films and lowers the d(001)‐spacing (the out‐of‐plane interlayer spacing), compared to the vapor‐deposited thin films. Core‐chlorinated NDI derivatives are found to be highly suitable for n‐channel active materials in low‐cost solution‐processed organic electronics. 相似文献
5.
Diketopyrrolopyrrole‐Based Conjugated Polymers Synthesized via Direct Arylation Polycondensation for High Mobility Pure n‐Channel Organic Field‐Effect Transistors 下载免费PDF全文
Kai Guo Junhua Bai Yu Jiang Zhongli Wang Ying Sui Yunfeng Deng Yang Han Hongkun Tian Yanhou Geng 《Advanced functional materials》2018,28(31)
High‐performance unipolar n‐type conjugated polymers (CPs) are critical for the development of organic electronics. In the current paper, four “weak donor–strong acceptor” n‐type CPs based on pyridine flanked diketopyrrolopyrrole (PyDPP), namely PPyDPP1‐4FBT, PPyDPP2‐4FBT, PPyDPP1‐4FTVT, and PPyDPP2‐4FTVT, are synthesized via direct arylation polycondensation by using 3,3′,4,4′‐tetrafluoro‐2,2′‐bithiophene (4FBT) or (E)‐1,2‐bis(3,4‐difluorothien‐2‐yl)ethene (4FTVT) as weak donor unit. All four polymers exhibit low‐lying highest occupied molecular orbital (≈ ?5.90 eV) and lowest unoccupied molecular orbital energy levels (≈ ?3.70 eV). Top‐gate/bottom‐contact organic field‐effect transistors based on all four polymers display unipolar n‐channel characteristics with electron mobility (µe) above 1 cm2 V?1 s?1 in air, and presented linear |ISD|1/2 ?VGS plots and weak dependence of the extracted moblity on gate voltage (VGS), indicative of the reliability of the extracted mobility values. Importantly, the devices based on PPyDPP1‐4FBT and PPyDPP2‐4FBT show a pure unipolar n‐channel transistor behavior as revealed by the typical unipolar n‐channel output characteristics and clear off‐regimes in transfer characteristics. Attributed to its high crystallinity and favorable thin film morphology, PPyDPP2‐4FBT shows the highest µe of 2.45 cm2 V?1 s?1, which is among the highest for unipolar n‐type CPs reported to date. This is also the first report for DPP based pure n‐type CPs with µe greater than 1 cm2 V?1 s?1. 相似文献
6.
Won Sik Yoon Sang Kyu Park Illhun Cho Jeong‐A Oh Jong H. Kim Soo Young Park 《Advanced functional materials》2013,23(28):3519-3524
A new high‐performing small molecule n‐channel semiconductor based on diketopyrrolopyrrole (DPP), 2,2′‐(5,5′‐(2,5‐bis(2‐ethylhexyl)‐3,6‐dioxo‐2,3,5,6‐tetrahydropyrrolo[3,4‐c]pyrrole‐1,4‐diyl)bis(thiophene‐5,2‐diyl))bis(methan‐1‐yl‐1‐ylidene)dimalononitrile (DPP‐T‐DCV), is successfully synthesized. The frontier molecular orbitals in this designed structure are elaborately tuned by introducing a strong electron‐accepting functionality (dicyanovinyl). The well‐defined lamellar structures of the crystals display a uniform terrace step height corresponding to a molecular monolayer in the solid‐state. As a result of this tuning and the remarkable crystallinity derived from the conformational planarity, organic field‐effect transistors (OFETs) based on dense‐packed solution‐processed single‐crystals of DPP‐T‐DCV exhibit an electron mobility (μe) up to 0.96 cm2 V?1 s?1, one of the highest values yet obtained for DPP derivative‐based n‐channel OFETs. Polycrystalline OFETs show promise (with an μe up to 0.64 cm2 V?1 s?1) for practical utility in organic device applications. 相似文献
7.
Solution‐Processable Dithienothiophenoquinoid (DTTQ) Structures for Ambient‐Stable n‐Channel Organic Field Effect Transistors 下载免费PDF全文
Sureshraju Vegiraju Guan‐Yu He Choongik Kim Pragya Priyanka Yen‐Ju Chiu Chiao‐Wei Liu Chu‐Yun Huang Jen‐Shyang Ni Ya‐Wen Wu Zhihua Chen Gene‐Hsiang Lee Shih‐Huang Tung Cheng‐Liang Liu Ming‐Chou Chen Antonio Facchetti 《Advanced functional materials》2017,27(21)
A series of dialkylated dithienothiophenoquinoids ( DTTQ s), end‐functionalized with dicyanomethylene units and substituted with different alkyl chains, are synthesized and characterized. Facile one‐pot synthesis of the dialkylated DTT core is achieved, which enables the efficient realization of DTTQ s as n‐type active semiconductors for solution‐processable organic field effect transistors (OFETs). The molecular structure of hexyl substituted DTTQ‐6 is determined via single‐crystal X‐ray diffraction, revealing DTTQ is a very planar core. The DTTQ cores form a “zig‐zag” linking layer and the layers stack in a “face‐to‐face” arrangement. The very planar core structure, short core stacking distance (3.30 Å), short intermolecular S? N distance (2.84 Å), and very low lying lowest unoccupied molecular orbital energy level of ?4.2 eV suggest that DTTQ s should be excellent electron transport candidates. The physical and electrochemical properties as well as OFETs performance and thin film morphologies of these new DTTQ s are systematically studied. Using a solution‐shearing method, DTTQ‐11 exhibits n‐channel transport with the highest mobility of up to 0.45 cm2 V?1 s?1 and a current ON/OFF ratio (I ON/I OFF) greater than 105. As such, DTTQ‐11 has the highest electron mobility of any DTT‐based small molecule semiconductors yet discovered combined with excellent ambient stability. Within this family, carrier mobility magnitudes are correlated with the alkyl chain length of the side chain substituents of DTTQ s. 相似文献
8.
Yutaka Ie Masashi Nitani Makoto Karakawa Hirokazu Tada Yoshio Aso 《Advanced functional materials》2010,20(6):907-913
An electronegative conjugated compound composed of a newly designed carbonyl‐bridged bithiazole unit and trifluoroacetyl terminal groups is synthesized as a candidate for air‐stable n‐type organic field‐effect transistor (OFET) materials. Cyclic voltammetry measurements reveal that carbonyl‐bridging contributes both to lowering the lowest unoccupied molecular orbital energy level and to stabilizing the anionic species. X‐ray crystallographic analysis of the compound shows a planar molecular geometry and a dense molecular packing, which is advantageous to electron transport. Through these appropriate electrochemical properties and structures for n‐type semiconductor materials, OFET devices based on this compound show electron mobilities as high as 0.06 cm2 V?1 s?1 with on/off ratios of 106 and threshold voltages of 20 V under vacuum conditions. Furthermore, these devices show the same order of electron mobility under ambient conditions. 相似文献
9.
Thionation Enhances the Electron Mobility of Perylene Diimide for High Performance n‐Channel Organic Field Effect Transistors 下载免费PDF全文
Andrew J. Tilley Chang Guo Mark B. Miltenburg Tyler B. Schon Han Yan Yuning Li Dwight S. Seferos 《Advanced functional materials》2015,25(22):3321-3329
Perylene diimides (PDIs) are one of the most widely studied n‐type materials, showing great promise as electron acceptors in organic photovoltaic devices and as electron transport materials in n‐channel organic field effect transistors. Amongst the well‐established chemical modification strategies for increasing the electron mobility of PDI, substitution of the imide oxygen atoms with sulfur, known as thionation, has remained largely unexplored. In this work, it is demonstrated that thionation is a highly effective means of enhancing the electron mobility of a bis‐N‐alkylated PDI derivative. Successive oxygen–sulfur substitution increases the electron mobility such that the fully thionated derivative ( S4 ) has an average mobility of 0.16 cm2 V?1 s?1. This is two orders of magnitude larger than the nonthionated parent compound ( P ), and is achieved by solution deposition and without thermal or solvent vapor annealing. A combination of atomic force microscopy and 2D wide angle X‐ray scattering experiments, together with theoretical modeling of charge transport efficiency, is used to explain the strong positive correlation observed between electron mobility and degree of thionation. This work establishes thionation as a highly effective means of enhancing the electron mobility of PDI, and provides motivation for the development of thionated PDI derivatives for organic electronics applications. 相似文献
10.
Hyukyun Kwon Mincheol Kim Hanul Moon Jongjin Lee Seunghyup Yoo 《Advanced functional materials》2016,26(38):6888-6895
The performance of C60‐based organic vertical field‐effect transistors (VFETs) is investigated as a function of key geometrical parameters to attain a better understanding of their operation mechanism and eventually to enhance their output current for maximal driving capability. To this end, a 2D device simulation is performed and compared with experimental results. The results reveal that the output current scales mostly with the width of its drain electrode, which is in essence equivalent to the channel width in conventional lateral‐channel transistors, but that of the source electrode and the thickness of C60 layers underneath the source electrode also play subtle but important roles mainly due to the source contact‐limited behavior of the organic VFETs under study. With design strategies acquired from this study, a VFET with an on/off ratio of 5.5 × 105 and on‐current corresponding to a channel length of near 1 μm in a conventional lateral‐channel organic field‐effect transistor (FET) is demonstrated, while the drain width of the VFET and the channel width of the lateral‐channel organic FET are the same. 相似文献
11.
Hyun Ho Choi Yaroslav I. Rodionov Alexandra F. Paterson Julianna Panidi Danila Saranin Nikolai Kharlamov Sergei I. Didenko Thomas D. Anthopoulos Kilwon Cho Vitaly Podzorov 《Advanced functional materials》2018,28(26)
Charge carrier mobility is an important characteristic of organic field‐effect transistors (OFETs) and other semiconductor devices. However, accurate mobility determination in FETs is frequently compromised by issues related to Schottky‐barrier contact resistance, that can be efficiently addressed by measurements in 4‐probe/Hall‐bar contact geometry. Here, it is shown that this technique, widely used in materials science, can still lead to significant mobility overestimation due to longitudinal channel shunting caused by voltage probes in 4‐probe structures. This effect is investigated numerically and experimentally in specially designed multiterminal OFETs based on optimized novel organic‐semiconductor blends and bulk single crystals. Numerical simulations reveal that 4‐probe FETs with long but narrow channels and wide voltage probes are especially prone to channel shunting, that can lead to mobilities overestimated by as much as 350%. In addition, the first Hall effect measurements in blended OFETs are reported and how Hall mobility can be affected by channel shunting is shown. As a solution to this problem, a numerical correction factor is introduced that can be used to obtain much more accurate experimental mobilities. This methodology is relevant to characterization of a variety of materials, including organic semiconductors, inorganic oxides, monolayer materials, as well as carbon nanotube and semiconductor nanocrystal arrays. 相似文献
12.
Minjun Kim Seung Un Ryu Sang Ah Park Kyoungwon Choi Taehyun Kim Dasol Chung Taiho Park 《Advanced functional materials》2020,30(20)
Polymeric semiconductors have demonstrated great potential in the mass production of low‐cost, lightweight, flexible, and stretchable electronic devices, making them very attractive for commercial applications. Over the past three decades, remarkable progress has been made in donor–acceptor (D–A) polymer‐based field‐effect transistors, with their charge‐carrier mobility exceeding 10 cm2 V?1 s?1. Numerous molecular designs of D–A polymers have emerged and evolved along with progress in understanding the charge transport physics behind their high mobility. In this review, the current understanding of charge transport in polymeric semiconductors is covered along with significant features observed in high‐mobility D–A polymers, with a particular focus on polymeric microstructures. Subsequently, emerging molecular designs with further prospective improvements in charge‐carrier mobility are described. Moreover, the current issues and outlook for future generations of polymeric semiconductors are discussed. 相似文献
13.
Michael C. Gwinner Yana Vaynzof Kulbinder K. Banger Peter K. H. Ho Richard H. Friend Henning Sirringhaus 《Advanced functional materials》2010,20(20):3457-3465
Electron injection from the source–drain electrodes limits the performance of many n‐type organic field‐effect transistors (OFETs), particularly those based on organic semiconductors with electron affinities less than 3.5 eV. Here, it is shown that modification of gold source–drain electrodes with an overlying solution‐deposited, patterned layer of an n‐type metal oxide such as zinc oxide (ZnO) provides an efficient electron‐injecting contact, which avoids the use of unstable low‐work‐function metals and is compatible with high‐resolution patterning techniques such as photolithography. Ambipolar light‐emitting field‐effect transistors (LEFETs) based on green‐light‐emitting poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) and blue‐light‐emitting poly(9,9‐dioctylfluorene) (F8) with electron‐injecting gold/ZnO and hole‐injecting gold electrodes show significantly lower electron threshold voltages and several orders of magnitude higher ambipolar currents, and hence light emission intensities, than devices with bare gold electrodes. Moreover, different solution‐deposited metal oxide injection layers are compared. By spin‐coating ZnO from a low‐temperature precursor, processing temperatures could be reduced to 150 °C. Ultraviolet photoemission spectroscopy (UPS) shows that the improvement in transistor performance is due to reduction of the electron injection barrier at the interface between the organic semiconductor and ZnO/Au compared to bare gold electrodes. 相似文献
14.
Ehren M. Mannebach Josef W. Spalenka Phillip S. Johnson Zhonghou Cai F. J. Himpsel Paul G. Evans 《Advanced functional materials》2013,23(5):554-564
Monolayer‐thickness two‐dimensional layers of α,ω‐dihexylsexithiophene (α,ω‐DH6T) exhibit field‐effect hole mobility of up to 0.032 cm2 V?1 s?1, higher than previously reported for monolayers of other small‐molecule organic semiconductors. In situ measurements during deposition show that the source‐drain current saturates rapidly after the percolation of monolayer‐high islands, indicating that the electrical properties of α,ω‐DH6T transistors are largely determined by the first molecular monolayer. The α,ω‐DH6T monolayer consists of crystalline islands in which the long axes of molecules are oriented approximately perpendicular to the plane of the substrate surface. In‐plane lattice constants measured using synchrotron grazing‐incidence diffraction are larger in monolayer‐thickness films than the in‐plane lattice constants of several‐monolayer films and of previously reported thick‐film structures. Near‐edge X‐ray absorption fine structure spectroscopy (NEXAFS) reveals that the larger in‐plane lattice constant of single‐monolayer films arises from a larger tilt of the molecular axis away from the surface normal. NEXAFS spectra at the C 1s and S 2p edges are consistent with a high degree of molecular alignment and with the local symmetry imposed by the thiophene ring. The high mobility of holes in α,ω‐DH6T monolayers can be attributed to the reduction of hole scattering associated with the isolation of the thiophene core from the interface by terminal hexyl chains. 相似文献
15.
16.
Joseph A. Letizia Jonathan Rivnay Antonio Facchetti Mark A. Ratner Tobin J. Marks 《Advanced functional materials》2010,20(1):50-58
The temperature dependence of field‐effect transistor (FET) mobility is analyzed for a series of n‐channel, p‐channel, and ambipolar organic semiconductor‐based FETs selected for varied semiconductor structural and device characteristics. The materials (and dominant carrier type) studied are 5,5′′′‐bis(perfluorophenacyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 1 , n‐channel), 5,5′′′‐bis(perfluorohexyl carbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 2 , n‐channel), pentacene ( 3 , p‐channel); 5,5′′′‐bis(hexylcarbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 4 , ambipolar), 5,5′′′‐bis‐(phenacyl)‐2,2′: 5′,2″:5″,2′′′‐quaterthiophene ( 5 , p‐channel), 2,7‐bis((5‐perfluorophenacyl)thiophen‐2‐yl)‐9,10‐phenanthrenequinone ( 6 , n‐channel), and poly(N‐(2‐octyldodecyl)‐2,2′‐bithiophene‐3,3′‐dicarboximide) ( 7 , n‐channel). Fits of the effective field‐effect mobility (µeff) data assuming a discrete trap energy within a multiple trapping and release (MTR) model reveal low activation energies (EAs) for high‐mobility semiconductors 1 – 3 of 21, 22, and 30 meV, respectively. Higher EA values of 40–70 meV are exhibited by 4 – 7 ‐derived FETs having lower mobilities (µeff). Analysis of these data reveals little correlation between the conduction state energy level and EA, while there is an inverse relationship between EA and µeff. The first variable‐temperature study of an ambipolar organic FET reveals that although n‐channel behavior exhibits EA = 27 meV, the p‐channel regime exhibits significantly more trapping with EA = 250 meV. Interestingly, calculated free carrier mobilities (µ0) are in the range of ~0.2–0.8 cm2 V?1 s?1 in this materials set, largely independent of µeff. This indicates that in the absence of charge traps, the inherent magnitude of carrier mobility is comparable for each of these materials. Finally, the effect of temperature on threshold voltage (VT) reveals two distinct trapping regimes, with the change in trapped charge exhibiting a striking correlation with room temperature µeff. The observation that EA is independent of conduction state energy, and that changes in trapped charge with temperature correlate with room temperature µeff, support the applicability of trap‐limited mobility models such as a MTR mechanism to this materials set. 相似文献
17.
Y.M. Sun Y.Q. Ma Y.Q. Liu Y.Y. Lin Z.Y. Wang Y. Wang C.A. Di K. Xiao X.M. Chen W.F. Qiu B. Zhang G. Yu W.P. Hu D.B. Zhu 《Advanced functional materials》2006,16(3):426-432
A series of new organic semiconductors for organic thin‐film transistors (OTFTs) using dithieno[3,2‐b:2′,3′‐d]thiophene as the core are synthesized. Their electronic and optical properties are investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), UV‐vis and photoluminescence spectroscopies, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The compounds exhibit an excellent field‐effect performance with a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. XRD patterns reveal these films, grown by vacuum deposition, to be highly crystalline, and SEM reveals well‐interconnected, microcrystalline domains in these films at room temperature. TGA and DSC demonstrate that the phenyl‐substituted compounds possess excellent thermal stability. Furthermore, weekly shelf‐life tests (under ambient conditions) of the OTFTs based on the phenyl‐substituted compounds show that the mobility for the bis(diphenyl)‐substituted thiophene was almost unchanged for more than two months, indicating a high environmental stability. 相似文献
18.
A.J.J.M. vanBreemen P.T. Herwig C.H.T. Chlon J. Sweelssen H.F.M. Schoo E.M. Benito D.M. deLeeuw C. Tanase J. Wildeman P.W.M. Blom 《Advanced functional materials》2005,15(5):872-876
The influence of the substitution pattern (unsymmetrical or symmetrical), the nature of the side chain (linear or branched), and the processing of several solution processable alkoxy‐substituted poly(p‐phenylene vinylene)s (PPVs) on the charge‐carrier mobility in organic field‐effect transistors (OFETs) is investigated. We have found the highest mobilities in a class of symmetrically substituted PPVs with linear alkyl chains (e.g., R1, R2 = n‐C11H23, R3 = n‐C18H37). We have shown that the mobility of these PPVs can be improved significantly up to values of 10–2 cm2 V–1 s–1 by annealing at 110 °C. In addition, these devices display an excellent stability in air and dark conditions. No change in the electrical performance is observed, even after storage for thirty days in humid air. 相似文献
19.
Mi Jung Lee Dhritiman Gupta Ni Zhao Martin Heeney Iain McCulloch Henning Sirringhaus 《Advanced functional materials》2011,21(5):932-940
Charge transport in the ribbon phase of poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT)—one of the most highly ordered, chain‐extended crystalline microstructures available in a conjugated polymer semiconductor—is studied. Ribbon‐phase PBTTT has previously been found not to exhibit high carrier mobilities, but it is shown here that field‐effect mobilities depend strongly on the device architecture and active interface. When devices are constructed such that the ribbon‐phase films are in contact with either a polymer gate dielectric or an SiO2 gate dielectric modified by a hydrophobic, self‐assembled monolayer, high mobilities of up to 0.4 cm2 V?1 s?1 can be achieved, which is comparable to those observed previously in terrace‐phase PBTTT. In uniaxially aligned, zone‐cast films of ribbon‐phase PBTTT the mobility anisotropy is measured for transport both parallel and perpendicular to the polymer chain direction. The mobility anisotropy is relatively small, with the mobility along the polymer chain direction being higher by a factor of 3–5, consistent with the grain size encountered in the two transport directions. 相似文献
20.
Simultaneous Edge‐on to Face‐on Reorientation and 1D Alignment of Small π‐Conjugated Molecules Using Room‐Temperature Mechanical Rubbing 下载免费PDF全文
Jean‐Charles Ribierre Toshihiko Tanaka Li Zhao Yuki Yokota Shinya Matsumoto Daisuke Hashizume Kazuto Takaishi Tsuyoshi Muto Benoît Heinrich Stéphane Méry Fabrice Mathevet Toshinori Matsushima Masanobu Uchiyama Chihaya Adachi Tetsuya Aoyama 《Advanced functional materials》2018,28(19)
In this study, room‐temperature mechanical rubbing is used to control the 3D orientation of small π‐conjugated molecular systems in solution‐processed polycrystalline thin films without using any alignment substrate. High absorption dichroic ratio and significant anisotropy in charge carrier mobilities (up to 130) measured in transistor configuration are obtained in rubbed organic films based on the ambipolar quinoidal quaterthiophene (QQT(CN)4). Moreover, a solvent vapor annealing treatment of the rubbed film is found to improve the optical and charge transport anisotropy due to an increased crystallinity. X‐ray diffraction and atomic force microscopy measurements demonstrate that rubbing does not only lead to an excellent 1D orientation of the QQT(CN)4 molecules over large areas but also modifies the orientation of the crystals, moving molecules from an edge‐on to a face‐on configuration. The reasons why a mechanical alignment technique can be used at room temperature for such a polycrystalline film are rationalized, by the plastic characteristics of the QQT(CN)4 layer and the role of the flexible alkyl side chains in the molecular packing. This nearly complete conversion from edge‐on to face‐on orientation by mechanical treatment in polycrystalline small‐molecule‐based thin films opens perspectives in terms of fundamental research and practical applications in organic optoelectronics. 相似文献