首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
Perovskite‐based organic–inorganic hybrids hold great potential as active layers in electronics or optoelectronics or as components of biosensors. However, many of these applications require thin films grown with good control over structure and thickness—a major challenge that needs to be addressed. The work presented here is an effort towards this goal and concerns the layer‐by‐layer deposition at ambient conditions of ferromagnetic organic–inorganic hybrids consisting of alternating CuCl4‐octahedra and organic layers. The Langmuir‐Blodgett technique used to assemble these structures provides intrinsic control over the molecular organization and film thickness down to the molecular level. Magnetic characterization reveals that the coercive field for these thin films is larger than that for solution‐grown layered bulk crystals. The strategy presented here suggests a promising cost effective route to facilitate the excellently controlled growth of sophisticated materials on a wide variety of substrates that have properties relevant for the high density storage media and spintronic devices.  相似文献   

8.
9.
Self‐organization is a fundamental and indispensable process in a living system. To understand cell behavior in vivo such as tumorigenesis, 3D cellular aggregates, instead of 2D cellular sheets, have been employed as a vivid in vitro model for self‐organization. However, most focus on the macroscale wetting and fusion of cellular aggregates. In this study, it is reported that self‐organization of cells from simple to complex aggregates can be induced by multiscale topography through confined templates at the macroscale and cell interactions at the nanoscale. On the one hand, macroscale templates are beneficial for the organization of individual cells into simple and complex cellular aggregates with various shapes. On the other hand, the realization of these macro‐organizations also depends on cell interactions at the nanoscale, as demonstrated by the intimate contact between nanoscale pseudopodia stretched by adjacent frontier cells, much like holding hands and by the variation in the intermolecular interactions based on E‐cadherin. Therefore, these findings may be very meaningful for clarifying the organizational mechanism of tumor development, tissue engineering and regenerative medicine.  相似文献   

10.
11.
12.
13.
The inorganic semiconductor is an attractive material in sewage disposal and solar power generation. The main challenges associated with environment‐sensitive semiconductors are structural degradation and deactivation caused by the unfavorable environment. Here, inspired by the pomegranate, a self‐protection strategy based on the self‐assembly of silver chloride (AgCl) particles is reported. The distributed photosensitive AgCl particles can be encapsulated by themselves through mixing aqueous silver nitrate and protic ionic liquids (PILs). A probable assembling mechanism is proposed based on the electrostatic potential investigation of PILs cations. The AgCl particles inside the shell maintain their morphology and structure well after 6 months light‐treatment. Moreover, they exhibit excellent photocatalytic activity, same as newly prepared AgCl particles, for degradation of methyl orange (MO), neutral red (NR), bromocresol green (BG), rhodamine B (RhB), Congo red (CR), and crystal violet (CV).  相似文献   

14.
15.
16.
17.
Self‐healing materials are able to partially or completely heal damage inflicted on them, e.g., crack formation; it is anticipated that the original functionality can be restored. This article covers the design and generic principles of self‐healing materials through a wide range of different material classes including metals, ceramics, concrete, and polymers. Recent key developments and future challenges in the field of self‐healing materials are summarised, and generic, fundamental material‐independent principles and mechanism are discussed and evaluated.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号