首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1D metal‐oxide nanotube (NT) structures have attracted considerable attention for applications in chemical sensors due to their high surface area and unique chemical and physical properties. Moreover, bimodal pores, i.e., meso‐ and macro‐sized pores, which are formed on the shell of NTs, can further facilitate gas penetration into the sensing layers, leading to much improved sensing properties. However, thin‐walled NTs with bimodal pore distribution have been rarely fabricated due to the limitations of synthetic methods. Here, Ostwald ripening‐driven electrospinning combined with sacrificial templating route using polystyrene (PS) colloid and bioinspired protein is firstly proposed for producing both bi‐modal pores and catalyst‐loaded thin‐walled SnO2 NTs. Homogeneous catalyst loading on porous SnO2 NTs is achieved by the protein cage that contains catalysts and PS colloids and protein shells are thermally decomposed during calcination of electrospun fibers, resulting in the creation of dual‐sized pores on NTs. Pt catalyst decorated porous SnO2 NTs (Pt‐PS_SnO2 NTs) show exceptionally high acetone gas response, superior selectivity against other interfering gases, and very low limit of detection (10 ppb) to simulated diabetic acetone molecules. More importantly, sensor arrays assembled with developed porous SnO2 NTs enable the direct distinction between the simulated diabetic breath and normal breath from healthy people.  相似文献   

2.
We demonstrate a novel lithographic technique utilizing a solvent to fabricate a chemically based semiconductor microdevice from an aqueous solution. According to this technique, SnO2 thin film could be integrated onto predefined sites on a SiO2/Si wafer. A patterned octadecyltrimethoxysilane self‐assembled monolayer (ODS‐SAM) was prepared by vacuum ultraviolet (VUV) irradiation through a photomask to use as a template for the fabrication of a micropatterned SnO2 thin film on the SiO2/Si surface. A Sn‐based thin film was then deposited onto the entire surface of the ODS template from an aqueous solution containing 0.03 mol L–1 of SnCl2·2H2O at 60 °C for 16 h in an ambient atmosphere. The thin film deposited on the methyl‐terminated area of the template was then peeled using an ultrasonic rinse in anhydrous toluene for 30 min, while the film deposited on the silanol area remained intact and undamaged. Rinsing in hydrophilic solvents did not facilitate peeling of the thin film from the methyl‐terminated area. We succeeded by this process in obtaining a high‐resolution, micropatterned Sn‐based thin film on an ODS‐SAM template on Si. The as‐deposited film was composed of fine Sn‐based particles. The sensitivity of this SnO2 thin film to H2 gas increases linearly with improving crystallinity. The effectiveness of anhydrous toluene as a rinse in solution lithography is discussed from the viewpoint of the high hydrophobic affinity between the rinse solvent and the terminal groups in the monolayer template.  相似文献   

3.
Multilayered ZnO‐SnO2 heterostructure thin films consisting of ZnO and SnO2 layers are produced by alternating the pulsed laser ablation of ZnO and SnO2 targets, and their structural and field‐effect electronic transport properties are investigated as a function of the thickness of the ZnO and SnO2 layers. The performance parameters of amorphous multilayered ZnO‐SnO2 heterostructure thin‐film transistors (TFTs) are highly dependent on the thickness of the ZnO and SnO2 layers. A highest electron mobility of 43 cm2/V·s, a low subthreshold swing of a 0.22 V/dec, a threshold voltage of 1 V, and a high drain current on‐to‐off ratio of 1010 are obtained for the amorphous multilayered ZnO(1.5 nm)‐SnO2(1.5 nm) heterostructure TFTs, which is adequate for the operation of next‐generation microelectronic devices. These results are presumed to be due to the unique electronic structure of amorphous multilayered ZnO‐SnO2 heterostructure film consisting of ZnO, SnO2, and ZnO‐SnO2 interface layers.  相似文献   

4.
A new atomic layer deposition (ALD) process for nanocrystalline tin dioxide films is developed and applied for the coating of nanostructured materials. This approach, which is adapted from non‐hydrolytic sol‐gel chemistry, permits the deposition of SnO2 at temperatures as low as 75 °C. It allows the coating of the inner and outer surface of multiwalled carbon nanotubes with a highly conformal film of controllable thickness. The ALD‐coated tubes are investigated as active components in gas‐sensor devices. Due to the formation of a p‐n heterojunction between the highly conductive support and the SnO2 thin film an enhancement of the gas sensing response is observed.  相似文献   

5.
Tin dioxide (SnO2) box beams, or tubes with square or rectangular cross‐sections, are synthesized on quartz substrates using a combustion chemical vapor deposition (CVD) method in an open atmosphere at 850 °C to 1150 °C. The cross‐sectional width of the as‐synthesized SnO2 tubules is tunable from 50 nm to sub‐micrometer depending on synthesis temperature. Each tubule is found to be a single crystal of rutile structure with four {110} peripheral surfaces and <001> growth direction. Although several growth patterns are observed for different samples, the basic growth mechanism is believed to be a self‐catalyzed, direct vapor–solid (VS) process, where most new material is incorporated into the bottom parts of the existing SnO2 tubules through surface diffusion. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. These well‐aligned SnO2 tubule arrays with tunable tube size could be the building blocks or templates for fabrication of functional nanodevices, especially those relevant to energy storage and conversion such as nanobatteries, nanofuel cells, and nanosensors. A gas sensor based on a single SnO2 nanotubes demonstrated extremely high sensitivity to ethanol vapor.  相似文献   

6.
Planar perovskite solar cells (PSCs) based on low‐temperature‐processed (LTP) SnO2 have demonstrated excellent photovoltaic properties duo to the high electron mobility, wide bandgap, and suitable band energy alignment of LTP SnO2. However, planar PSCs or mesoporous (mp) PSCs based on high‐temperature‐processed (HTP) SnO2 show much degraded performance. Here, a new strategy with fully HTP Mg‐doped quantum dot SnO2 as blocking layer (bl) and a quite thin SnO2 nanoparticle as mp layer are developed. The performances of both planar and mp PSCs has been greatly improved. The use of Mg‐SnO2 in planar PSCs yields a high‐stabilized power conversion efficiency (PCE) of close to 17%. The champion of mp cells exhibits hysteresis free and stable performance with a high‐stabilized PCE of 19.12%. The inclusion of thin mp SnO2 in PSCs not only plays a role of an energy bridge, facilitating electrons transfer from perovskite to SnO2 bl, but also enhances the contact area of SnO2 with perovskite absorber. Impedance analysis suggests that the thin mp layer is an “active scaffold” selectively collecting electrons from perovskite and can eliminate hysteresis and effectively suppress recombination. This is an inspiring advance toward high‐performance PSCs with HTP mp SnO2.  相似文献   

7.
This work presents a new route to suppress grain growth and tune the sensitivity and selectivity of nanocrystalline SnO2 fibers. Unloaded and Pd‐loaded SnO2 nanofiber mats are synthesized by electrospinning followed by hot‐pressing at 80 °C and calcination at 450 or 600 °C. The chemical composition and microstructure evolution as a function of Pd‐loading and calcination temperature are examined using EDS, XPS, XRD, SEM, and HRTEM. Highly porous fibrillar morphology with nanocrystalline fibers comprising SnO2 crystallites decorated with tiny PdO crystallites is observed. The grain size of the SnO2 crystallites in the layers that are calcined at 600 °C decreases with increasing Pd concentration from about 15 nm in the unloaded specimen to about 7 nm in the 40 mol% Pd‐loaded specimen, indicating that Pd‐loading could effectively suppress the SnO2 grain growth during the calcination step. The Pd‐loaded SnO2 sensors have 4 orders of magnitude higher resistivity and exhibit significantly enhanced sensitivity to H2 and lower sensitivity to NO2 compared to their unloaded counterparts. These observations are attributed to enhanced electron depletion at the surface of the PdO‐decorated SnO2 crystallites and catalytic effect of PdO in promoting the oxidation of H2 into H2O. These phenomena appear to have a much larger effect on the sensitivity of the Pd‐loaded sensors than the reduction in grain size.  相似文献   

8.
Hollow tin dioxide (SnO2) microspheres were synthesized by the simple heat treatment of a mixture composed of tin(IV ) tetrachloride pentahydrate (SnCl4·5H2O) and resorcinol–formaldehyde gel (RF gel). Because hollow structures were formed during the heat treatment, the pre‐formation of template and the adsorption of target precursor on template are unnecessary in the current method, leading to simplified synthetic procedures and facilitating mass production. Field‐emission scanning electron microscopy (FE‐SEM) images showed 1.7–2.5 μm sized hollow spherical particles. Transmission electron microscopy (TEM) images showed that the produced spherical particles are composed of a hollow inner cavity and thin outer shell. When the hollow SnO2 microspheres were used as a lithium‐battery anode, they exhibited extraordinarily high discharge capacities and coulombic efficiency. The reported synthetic procedure is straightforward and inexpensive, and consequently can be readily adopted to produce large quantities of hollow SnO2 microspheres. This straightforward approach can be extended for the synthesis of other hollow microspheres including those obtained from ZrO2 and ZrO2/CeO2 solid solutions.  相似文献   

9.
Perovskite solar cells (PSCs) may offer huge potential in photovoltaic conversion, yet their practical applications face one major obstacle: their low stability, or quick degradation of their initial efficiencies. Here, a new design scheme is presented to enhance the PSC stability by using low‐temperature hydrothermally grown hierarchical nano‐SnO2 electron transport layers (ETLs). The ETL contains a thin compact SnO2 layer underneath a mesoporous layer of SnO2 nanosheets. The mesoporous layer plays multiple roles of enhancing photon collection, preventing moisture penetration and improving the long‐term stability. Through such simple approaches, PSCs with power conversion efficiencies of ≈13% can be readily obtained, with the highest efficiency to be 16.17%. A prototypical PSC preserves 90% of its initial efficiency even after storage in air at room temperature for 130 d without encapsulation. This study demonstrates that hierarchical SnO2 is a potential ETL for fabricating low‐cost and efficient PSCs with long‐term stability.  相似文献   

10.
This work presents a new route to suppress grain growth and tune the sensitivity and selectivity of nanocrystalline SnO2 fibers. Unloaded and Pd‐loaded SnO2 nanofiber mats are synthesized by electrospinning followed by hot‐pressing at 80 °C and calcination at 450 or 600 °C. The chemical composition and microstructure evolution as a function of Pd‐loading and calcination temperature are examined using EDS, XPS, XRD, SEM, and HRTEM. Highly porous fibrillar morphology with nanocrystalline fibers comprising SnO2 crystallites decorated with tiny PdO crystallites is observed. The grain size of the SnO2 crystallites in the layers that are calcined at 600 °C decreases with increasing Pd concentration from about 15 nm in the unloaded specimen to about 7 nm in the 40 mol% Pd‐loaded specimen, indicating that Pd‐loading could effectively suppress the SnO2 grain growth during the calcination step. The Pd‐loaded SnO2 sensors have 4 orders of magnitude higher resistivity and exhibit significantly enhanced sensitivity to H2 and lower sensitivity to NO2 compared to their unloaded counterparts. These observations are attributed to enhanced electron depletion at the surface of the PdO‐decorated SnO2 crystallites and catalytic effect of PdO in promoting the oxidation of H2 into H2O. These phenomena appear to have a much larger effect on the sensitivity of the Pd‐loaded sensors than the reduction in grain size.  相似文献   

11.
Nanohole‐structured single‐crystalline Pt nanosheets have been synthesized by the borohydride reduction of Na2PtCl6 confined to the lyotropic liquid crystals (LLCs) of polyoxyethylene (20) sorbitan monooleate (Tween 80) with or without nonaethylene‐glycol (C12EO9). The Pt nanosheets of around 4–10 nm in central thickness and up to 500 nm or above in diameter have a number of hexagonal‐shaped nanoholes ∼1.8 nm wide. High‐resolution electron microscope images of the nanosheets showed atomic fringes with a spacing of 0.22 nm indicating that the nanosheets are crystallographically continuous through the nanoholed and non‐holed areas. The inner‐angle distributions for the hexagonal nanoholes indicate that the six sides of the nanoholes are walled with each two Pt (111), Pt (1 1) and Pt (010) planes. The formation mechanism of nanoholed Pt nanosheets is discussed on the basis of structural and compositional data for the resulting solids and their precursory LLCs, with the aid of similar nanohole growth observed for a Tween 80 free but oleic acid‐incorporated system. It is also demonstrated that the nanoholed Pt nanostructures loaded on carbon exhibit fairly high electrocatalytic activity for oxygen reduction reaction and a high performance as a cathode material for polymer‐electrolyte fuel cells, along with their extremely high thermostability revealed through the effect of electron‐irradiation.  相似文献   

12.
Wide and long ribbons of single‐crystalline SnO2 have been achieved via laser ablation of a SnO2 target. Transmission electron microscopy (TEM) shows the as‐grown SnO2 ribbons are structurally perfect and uniform, with widths of 300–500 nm, thicknesses of 30–50 nm (width‐to‐thickness ratio of ~ 10), and lengths ranging from several hundreds of micrometers to the order of millimeters. X‐ray diffraction (XRD) pattern and energy‐dispersive X‐ray spectroscopy (EDS) spectral analysis indicate that the ribbons have the phase structure and chemical composition of the rutile form of SnO2. Selected‐area electron diffraction (SAED) patterns and high‐resolution TEM images reveal that the ribbons are single crystals and grow along the [100] crystal direction. Photoluminescence measurements show that the synthesized SnO2 ribbons have one strong emission band at ~ 605 nm and a red‐shift of ~ 30 nm, as compared to standard SnO2 powder, which may be attributed to crystal defects and residual strains accommodated during the growth of the ribbons.  相似文献   

13.
High activity, carbon supported Pt electrocatalysts were synthesized using a supercritical fluid method and a selective heterogeneous nucleation reaction to disperse Pt onto single walled carbon nanotube and carbon fiber supports. These nanocomposite materials were then incorporated into catalyst and gas diffusion layers consisting of polyelectrolytes, i.e., Nafion, polyaniline, and polyethyleneimine using layer‐by‐layer (LBL) assembly techniques. Due to the ultrathin nature and excellent homogeneity characteristics of LBL materials, the LBL nanocomposite catalyst layers (LNCLs) yielded much higher Pt utilizations, 3,198 mW mgPt?1, than membrane electrode assemblies produced using conventional methods (~800 mW mgPt?1). Thinner membranes (100 bilayers) can further improve the performance of the LNCLs and these layers can function as catalyzed gas diffusion layers for the anode and cathode of a polymer electrolyte membrane fuel cell.  相似文献   

14.
SnO2 decorated SiO2 chemical sensors with different Sn/Si ratios were synthesized by micro-emulsion followed by ultrasonic-assisted deposition-precipitation method and used for highly sensitive and selective detection of ethanol and acetone. XRD, EDS, SEM, and TEM were used to characterize the samples. The results confirm deposition of small crystalline tin oxide particles on the surface of silica particles. Using these formed materials for detection of ethanol and acetone resulted in significant enhancement of the sensitivity and reducing temperature of maximum response in comparison to the pure SnO2. The selectivity of the sample with the highest sensitivity to ethanol and acetone, i.e. 80 wt% SnO2/SiO2, was examined by measuring its sensitivity to some interfering gases including carbon monoxide, methane, toluene, Trichloroethylene (TCE) and propane; the results showed very high selectivity of the sensor to ethanol and acetone, especially at low temperatures. The sensor responses to traces of acetone in the air with the concentration ranging from 0.5 to 5 ppm at different temperatures of 70, 170 and 270, and 370 °C were measured to evaluate the capability of the sensor for detection of acetone in the breath of human, which is helpful in the diabetes diagnosis. The sensor could effectively show high enough sensitivity even to these very low concentrations of acetone which reveals its high potential for being used in acetone detection devices. Finally, the effect of humidity on the sensitivity of sensor to acetone was investigated. Increasing the humidity of background air, caused the sensor response to decrease and the operating temperature of maximum response of the sensor to increase.  相似文献   

15.
A high‐quality polycrystalline SnO2 electron‐transfer layer is synthesized through an in situ, low‐temperature, and unique butanol–water solvent‐assisted process. By choosing a mixture of butanol and water as a solvent, the crystallinity is enhanced and the crystallization temperature is lowered to 130 °C, making the process fully compatible with flexible plastic substrates. The best solar cells fabricated using these layers achieve an efficiency of 20.52% (average 19.02%) which is among the best in the class of planar n–i–p‐type perovskite (MAPbI3) solar cells. The strongly reduced crystallization temperature of the materials allows their use on a flexible substrate, with a resulting device efficiency of 18%.  相似文献   

16.
Perovskite solar cells have achieved the highest power conversion efficiencies on metal oxide n‐type layers, including SnO2 and TiO2. Despite ZnO having superior optoelectronic properties to these metal oxides, such as improved transmittance, higher conductivity, and closer conduction band alignment to methylammonium (MA)PbI3, ZnO is largely overlooked due to a chemical instability when in contact with metal halide perovskites, which leads to rapid decomposition of the perovskite. While surface passivation techniques have somewhat mitigated this instability, investigations as to whether all metal halide perovskites exhibit this instability with ZnO are yet to be undertaken. Experimental methods to elucidate the degradation mechanisms at ZnO–MAPbI3 interfaces are developed. By substituting MA with formamidinium (FA) and cesium (Cs), the stability of the perovskite–ZnO interface is greatly enhanced and it is found that stability compares favorably with SnO2‐based devices after high‐intensity UV irradiation and 85 °C thermal stressing. For devices comprising FA‐ and Cs‐based metal halide perovskite absorber layers on ZnO, a 21.1% scanned power conversion efficiency and 18% steady‐state power output are achieved. This work demonstrates that ZnO appears to be as feasible an n‐type charge extraction layer as SnO2, with many foreseeable advantages, provided that MA cations are avoided.  相似文献   

17.
Three types of screen‐printable catalytic pastes were successfully prepared to be used as counterelectrode for monolithic dye solar cells encapsulated with glass frit. The electroless bottom‐up method or so‐called polyol process has been applied to fabricate thermally stable SnO2:Sb/Pt and carbon black/Pt nanocomposites. The catalytic and electric properties of these materials were compared with a new platinum‐free type of carbon counterelectrode. The layers containing low platinum amounts (less than 5 µg/cm2) exhibit a very low charge transfer resistance of about 0·4 Ω · cm2. Also the conductive carbon layer shows an acceptable charge transfer resistance of 1·6 Ω · cm2. Additionally the catalytic layer containing porous carbon black reveals excellent sheet resistance below 5 Ω/□; this feature has enabled to work out a low cost counterelectrode which combined suitable catalytic and conductive properties. The layers have been characterized using following methods: electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FE‐SEM), energy filter transmission electron microscopy (EF‐TEM) and inductively coupled plasma mass spectroscopy (ICP‐MS). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Helical fibers are versatile building blocks used by Nature to improve mechanical performance and to tune local behavior of load‐bearing materials. Helicoidal biocomposites are arranged in multiple layers with different fiber orientations. Such heterogeneity, not matched in synthetic materials, provides biological structures with superior properties. This is the case of the multilayer tube‐like structure of the wood cell wall, where each ply features a compliant matrix reinforced by stiff helicoidal microfibrils. Here, 3D polyjet printing and computer simulations are combined to investigate wood‐inspired helix‐reinforced cylinders. Composites with a main layer containing helicoidal fibers, bordered by inner and outer plies having thinner fibrils are considered. It is shown how the mechanical functionalities of the synthetic structures can be programmed by varying fibers/fibrils orientation and matrix compliance. It is demonstrated that failure resistance can be enhanced by enclosing the main helicoidal layer with a minimum amount of thin fibrils oriented perpendicular to the applied load, as observed in wood. Finite element simulations are used to highlight the critical role of the matrix in load‐transfer mechanisms among stiff elements. These structures have the potential to be assembled into larger systems, leading to graded composites with region‐specific properties optimized for multiple functionalities.  相似文献   

19.
Improving the ohmic contact and interfacial morphology between an electron transport layer (ETL) and perovskite film is the key to boost the efficiency of planar perovskite solar cells (PSCs). In the current work, an amorphous–crystalline heterophase tin oxide bilayer (Bi‐SnO2) ETL is prepared via a low‐temperature solution process. Compared with the amorphous SnO2 sol–gel film (SG‐SnO2) or the crystalline SnO2 nanoparticle (NP‐SnO2) counterparts, the heterophase Bi‐SnO2 ETL exhibits improved surface morphology, considerably fewer oxygen defects, and better energy band alignment with the perovskite without sacrificing the optical transmittance. The best PSC device (active area ≈ 0.09 cm2) based on a Bi‐SnO2 ETL is hysteresis‐less and achieves an outstanding power conversion efficiency of ≈20.39%, which is one of the highest efficiencies reported for SnO2‐triple cation perovskite system based on green antisolvent. More fascinatingly, large‐area PSCs (active areas of ≈3.55 cm2) based on the Bi‐SnO2 ETL also achieves an extraordinarily high efficiency of ≈14.93% with negligible hysteresis. The improved device performance of the Bi‐SnO2‐based PSC arises predominantly from the improved ohmic contact and suppressed bimolecular recombination at the ETL/perovskite interface. The tailored morphology and energy band structure of the Bi‐SnO2 has enabled the scalable fabrication of highly efficient, hysteresis‐less PSCs.  相似文献   

20.
Electrochemical reduction of CO2 (ERC) into useful products, such as formic acid and carbon monoxide, is a fascinating approach for CO2 fixation as well as energy storage. Sn‐based materials are attractive catalysts for highly selective ERC into C1 products (including HCOOH and CO), but still suffer from high overpotential, low current density, and poor stability. Here, One‐dimensional (1D) SnO2 with wire‐in‐tube (WIT) structure is synthesized and shows superior selectivity for C1 products. Using the WIT SnO2 as the ERC catalyst, very high Faradaic efficiency of C1 products (>90%) can be achieved at a wide potential range from ?0.89 to ?1.29 V versus RHE, thus substantially suppressing the hydrogen evolution reaction. The electrocatalyst also exhibits excellent long‐term stability. The improved catalytic activity of the WIT SnO2 over the commercial SnO2 nanoparticle indicates that higher surface area and large number of grain boundaries can effectively enhance the ERC activity. Synthesized via a facile and low‐cost electrospinning technology, the reduced WIT SnO2 can serve as a promising electrocatalyst for efficient CO2 to C1 products conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号