首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Atomically thin 2D layered transition metal dichalcogenides (TMDs) have been extensively studied in recent years because of their appealing electrical and optical properties. Here, the fabrication of ReS2 field‐effect transistors is reported via the encapsulation of ReS2 nanosheets in a high‐κ Al2O3 dielectric environment. Low‐temperature transport measurements allow to observe a direct metal‐to‐insulator transition originating from strong electron–electron interactions. Remarkably, the photodetectors based on ReS2 exhibit gate‐tunable photoresponsivity up to 16.14 A W?1 and external quantum efficiency reaching 3168%, showing a competitive device performance to those reported in graphene, MoSe2, GaS, and GaSe‐based photodetectors. This study unambiguously distinguishes ReS2 as a new candidate for future applications in electronics and optoelectronics.  相似文献   

3.
Single crystal microwires of a well‐studied organic semiconductor used in organic solar cells, namely p‐DTS(FBTTh2)2, are prepared via a self‐assembly method in solution. The high level of intermolecular organization in the single crystals facilitates migration of charges, relative to solution‐processed films, and provides insight into the intrinsic charge transport properties of p‐DTS(FBTTh2)2. Field‐effect transistors based on the microwires can achieve hole mobilities on the order of ≈1.8 cm2 V?1 s?1. Furthermore, these microwires show photoresponsive electrical characteristics and can act as photoswitches, with switch ratios over 1000. These experimental results are interpreted using theoretical simulations using an atomistic density functional theory approach. Based on the lattice organization, intermolecular couplings and reorganization energies are calculated, and hole mobilities for comparison with experimental measurements are further estimated. These results demonstrate a unique example of the optoelectronic applications of p‐DTS(FBTTh2)2 microwires.  相似文献   

4.
Monolithic integration of microscale organic field‐effect transistors (micro‐OFETs) is the only and inevitable path toward low‐cost large‐area electronics and displays. However, to date, such an ultimate technology has not yet evolved due to challenges in positioning and patterning highly crystalline microscale molecular layers as well as in developing micrometer scale integration schemes. In this work, by mastering the local growth of molecular semiconductors on pre‐defined terraces, single‐crystal quasi‐2D molecular layers tens of square micrometers in size are created in dense periodic arrays on a Si substrate. Nondestructive photolithographic processes are developed to pattern micro‐OFETs with mobilities up to 34.6 cm2 V?1 s?1. This work demonstrates the feasibility to integrate arrays of short‐channel micro‐OFETs into electronic circuitry by highly parallel and size scalable fabrication technologies.  相似文献   

5.
Organic‐inorganic hybrid photoelectric devices draw considerable attention because of their unique features by combining the relatively low ionization potential of the organic molecules and the high electron affinity of inorganic semiconductors. Hybrid organic‐inorganic poly(3‐hexylthiophene) (P3HT):CdSe nanowire heterojunction photodetectors are first demonstrated on silicon substrates, exhibiting a greatly enhanced photocurrent, a fast response, and a recovery time shorter than 0.1 s. Flexible hybrid photodetectors with excellent mechanical flexibility and stability are also fabricated on both poly(ethylene terephthalate) (PET) substrates and printing paper. The flexible devices are successfully operated under bending up to almost 180° and show an extremely high on/off switching ratio (larger than 500), a fast time response (about 10 ms), and excellent wavelength‐dependence, which are very desirable properties for its practical application in high‐frequency or high‐speed flexible electronic devices.  相似文献   

6.
Organic field‐effect transistors (OFETs) often deviate from ideal behaviors in air, which masks their intrinsic properties and thus significantly impedes their practical applications. A key issue of how the presence of air affects the ideality of OFETs has not yet been fully understood. It is revealed that air atmosphere may exert a double‐edged sword effect on the active semiconductor layer when determining the ideality of OFETs fabricated from p‐type crystalline organic semiconductors. Upon exposing the as‐fabricated device to air, water and oxygen mainly function as efficient p‐type dopants for the active layer in the contact regions, enhancing charge carrier injection and consequently improving device ideality. Nevertheless, as the exposure time increases, the trapping centers for the injected minority charge carriers appear in the channel region, leading to degradation of device ideality. Inspired by the double‐edged sword behavior of air, a near‐ideal OFET is achieved by ingeniously utilizing the doping/positive effect and eliminating the trapping/negative effect. The effect of air on the ideality of p‐type OFETs is clarified, which not only illuminates some common observations of OFETs in air but also offers useful guidance for the construction of high‐performance ideal OFETs.  相似文献   

7.
This paper describes a simple, vapor‐phase route for the synthesis of metastable α‐phase copper‐phthalocyanine (CuPc) single‐crystal nanowires through control of the growth temperature. The influence of the growth temperature on the crystal structures, morphology, and size of the CuPc nanostructures is explored using X‐ray diffraction (XRD), optical absorption, and transmission electron microscopy (TEM). α‐CuPc nanowires are successfully incorporated as active semiconductors in field‐effect transistors (FETs). Single nanowire devices exhibit carrier mobilities and current on/off ratios as high as 0.4 cm2 V?1 s?1 and >104, respectively.  相似文献   

8.
2D layered materials are an emerging class of low‐dimensional materials with unique physical and structural properties and extensive applications from novel nanoelectronics to multifunctional optoelectronics. However, the widely investigated 2D materials are strongly limited in high‐performance electronics and ultrabroadband photodetectors by their intrinsic weaknesses. Exploring the new and narrow bandgap 2D materials is very imminent and fundamental. A narrow‐bandgap noble metal dichalcogenide (PtS2) is demonstrated in this study. The few‐layer PtS2 field‐effect transistor exhibits excellent electronic mobility exceeding 62.5 cm2 V?1 s?1 and ultrahigh on/off ratio over 106 at room temperature. The temperature‐dependent conductance and mobility of few‐layer PtS2 transistors show a direct metal‐to‐insulator transition and carrier scattering mechanisms, respectively. Remarkably, 2D PtS2 photodetectors with broadband photodetection from visible to mid‐infrared and a fast photoresponse time of 175 µs at 830 nm illumination for the first time are obtained at room temperature. Our work opens an avenue for 2D noble‐metal dichalcogenides to be applied in high‐performance electronic and mid‐infrared optoelectronic devices.  相似文献   

9.
Single‐crystal, 1D nanostructures are well known for their high mobility electronic transport properties. Oxide‐nanowire field‐effect transistors (FETs) offer both high optical transparency and large mechanical conformability which are essential for flexible and transparent display applications. Whereas the “on‐currents” achieved with nanowire channel transistors are already sufficient to drive active matrix organic light emitting diode (AMOLED) displays; it is shown here that incorporation of electrochemical‐gating (EG) to nanowire electronics reduces the operation voltage to ≤2 V. This opens up new possibilities of realizing flexible, portable, transparent displays that are powered by thin film batteries. A composite solid polymer electrolyte (CSPE) is used to obtain all‐solid‐state FETs with outstanding performance; the field‐effect mobility, on/off current ratio, transconductance, and subthreshold slope of a typical ZnO single‐nanowire transistor are 62 cm2/Vs, 107, 155 μS/μm and 115 mV/dec, respectively. Practical use of such electrochemically‐gated field‐effect transistor (EG FET) devices is supported by their long‐term stability in air. Moreover, due to the good conductivity (≈10?2 S/cm) of the CSPE, sufficiently high switching speed of such EG FETs is attainable; a cut‐off frequency in excess of 100 kHz is measured for in‐plane FETs with large gate‐channel distance of >10 μm. Consequently, operation speeds above MHz can be envisaged for top‐gate transistor geometries with insulator thicknesses of a few hundreds of nanometers. The solid polymer electrolyte developed in this study has great potential in future device fabrication using all‐solution processed and high throughput techniques.  相似文献   

10.
Electron transfer from excited dye molecules (chlorophyll or fluorescein) to a semiconductor is demonstrated by photoaction and photoluminescence spectra on field‐effect transistors consisting of dye‐sensitized individual SnO2 nanowires. The photoaction spectrum shows a much better resolution for nanowires non‐covalently functionalized with dye molecules than for dyes deposited on SnO2 nanoparticle‐films. Possible reasons for the deviation between the photoaction spectra and ordinary optical absorption spectra as well as for the current‐tail appearing along the falling edge are addressed. In dye‐sensitized nanowires, electron transfer from photo‐excited dyes to nanowires is analyzed by comparing gate‐voltage dependences in photoaction and photoluminescence spectra. The importance of this study is in the understanding of electron injection and recombination provided, as well as the performance optimization of nanowire‐based dye‐sensitized solar cells.  相似文献   

11.
Here, the operation of a field‐effect transistor based on a single InAs nanowire gated by an ionic liquid is reported. Liquid gating yields very efficient carrier modulation with a transconductance value 30 times larger than standard back gating with the SiO2/Si++ substrate. Thanks to this wide modulation, the controlled evolution from semiconductor to metallic‐like behavior in the nanowire is shown. This work provides the first systematic study of ionic‐liquid gating in electronic devices based on individual III–V semiconductor nanowires: this architecture opens the way to a wide range of fundamental and applied studies from the phase transitions to bioelectronics.  相似文献   

12.
13.
A graphite thin film was investigated as the drain and source electrodes for bottom‐contact organic field‐effect transistors (BC OFETs). Highly conducting electrodes (102 S cm?1) at room temperature were obtained from pyrolyzed poly(l,3,4‐oxadiazole) (PPOD) thin films that were prepatterned with a low‐cost inkjet printing method. Compared to the devices with traditional Au electrodes, the BC OFETs showed rather high performances when using these source/drain electrodes without any further modification. Being based on a graphite‐like material these electrodes possess excellent compatibility and proper energy matching with both p‐ and n‐type organic semiconductors, which results in an improved electrode/organic‐layer contact and homogeneous morphology of the organic semiconductors in the conducting channel, and finally a significant reduction of the contact resistance and enhancement of the charge‐carrier mobility of the devices is displayed. This work demonstrates that with the advantages of low‐cost, high‐performance, and printability, PPOD could serve as an excellent electrode material for BC OFETs.  相似文献   

14.
15.
16.
17.
Physically flexible electronics offer a wide range of benefits, including the development of next‐generation consumer electronics and healthcare products. The advancement of physical flexibility, typically achieved by the reduction of the total device thickness, including substrates and encapsulation layers, shows great promise for skin‐laminated electronics. Organic electronics—devices relying on carbon‐based materials—offer many advantages over their inorganic counterparts, including the following: significantly lower fabrication temperatures resulting in alternative fabrication techniques, including inkjet and roll‐to‐roll printing, enabling low‐cost and large‐area fabrication; biocompatibility; and spectacular physical flexibility. This article presents a review, spanning the last two decades, of organic field‐effect transistors with the total thickness of just a few microns as well as devices demonstrated in this decade with a total thickness of few hundred of nanometers. A handful of demonstrations of other organic electronic thin film devices are also presented.  相似文献   

18.
The temperature dependence of field‐effect transistor (FET) mobility is analyzed for a series of n‐channel, p‐channel, and ambipolar organic semiconductor‐based FETs selected for varied semiconductor structural and device characteristics. The materials (and dominant carrier type) studied are 5,5′′′‐bis(perfluorophenacyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 1 , n‐channel), 5,5′′′‐bis(perfluorohexyl carbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 2 , n‐channel), pentacene ( 3 , p‐channel); 5,5′′′‐bis(hexylcarbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 4 , ambipolar), 5,5′′′‐bis‐(phenacyl)‐2,2′: 5′,2″:5″,2′′′‐quaterthiophene ( 5 , p‐channel), 2,7‐bis((5‐perfluorophenacyl)thiophen‐2‐yl)‐9,10‐phenanthrenequinone ( 6 , n‐channel), and poly(N‐(2‐octyldodecyl)‐2,2′‐bithiophene‐3,3′‐dicarboximide) ( 7 , n‐channel). Fits of the effective field‐effect mobility (µeff) data assuming a discrete trap energy within a multiple trapping and release (MTR) model reveal low activation energies (EAs) for high‐mobility semiconductors 1 – 3 of 21, 22, and 30 meV, respectively. Higher EA values of 40–70 meV are exhibited by 4 – 7 ‐derived FETs having lower mobilities (µeff). Analysis of these data reveals little correlation between the conduction state energy level and EA, while there is an inverse relationship between EA and µeff. The first variable‐temperature study of an ambipolar organic FET reveals that although n‐channel behavior exhibits EA = 27 meV, the p‐channel regime exhibits significantly more trapping with EA = 250 meV. Interestingly, calculated free carrier mobilities (µ0) are in the range of ~0.2–0.8 cm2 V?1 s?1 in this materials set, largely independent of µeff. This indicates that in the absence of charge traps, the inherent magnitude of carrier mobility is comparable for each of these materials. Finally, the effect of temperature on threshold voltage (VT) reveals two distinct trapping regimes, with the change in trapped charge exhibiting a striking correlation with room temperature µeff. The observation that EA is independent of conduction state energy, and that changes in trapped charge with temperature correlate with room temperature µeff, support the applicability of trap‐limited mobility models such as a MTR mechanism to this materials set.  相似文献   

19.
Transition metal dichalcogenides (TMDs) layers of molecular thickness, in particular molybdenum disulfide (MoS2), become increasingly important as active elements for mechanically flexible/stretchable electronics owing to their relatively high carrier mobility, wide bandgap, and mechanical flexibility. Although the superior electronic properties of TMD transistors are usually integrated into rigid silicon wafers or glass substrates, the achievement of similar device performance on flexible substrates remains quite a challenge. The present work successfully addresses this challenge by a novel process architecture consisting of a solution‐based polyimide (PI) flexible substrate in which laser‐welded silver nanowires are embedded, a hybrid organic/inorganic gate insulator, and multilayers of MoS2. Transistors fabricated according to this process scheme have decent properties: a field‐effect‐mobility as high as 141 cm2 V?1 s?1 and an Ion/Ioff ratio as high as 5 × 105. Furthermore, no apparent degradation in the device properties is observed under systematic cyclic bending tests with bending radii of 10 and 5 mm. Overall electrical and mechanical results provide potentially important applications in the fabrication of versatile areas of flexible integrated circuitry.  相似文献   

20.
Colloidally synthesized nanomaterials are among the promising candidates for future electronic devices due to their simplicity and the inexpensiveness of their production. Specifically, colloidal nanosheets are of great interest since they are conveniently producible through the colloidal approach while having the advantages of two‐dimensionality. In order to employ these materials, according transistor behavior should be adjustable and of high performance. It is shown that the transistor performance of colloidal lead sulfide nanosheets is tunable by altering the surface passivation, the contact metal, or by exposing them to air. It is found that adding halide ions to the synthesis leads to an improvement of the conductivity, the field‐effect mobility, and the on/off ratio of these transistors by passivating their surface defects. Superior n‐type behavior with a field‐effect mobility of 248 cm2 V?1 s?1 and an on/off ratio of 4 × 106 is achieved. The conductivity of these stripes can be changed from n‐type to p‐type by altering the contact metal and by adding oxygen to the working environment. As a possible solution for the post‐Moore era, realizing new high‐quality semiconductors such as colloidal materials is crucial. In this respect, the results can provide new insights which helps to accelerate their optimization for potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号