首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A guaranteed cost control scheme is proposed for batch processes described by a two‐dimensional (2‐D) system with uncertainties and interval time‐varying delay. First, a 2‐D controller, which includes a robust feedback control to ensure performances over time and an iterative learning control to improve the tracking performance from cycle to cycle, is formulated. The guaranteed cost law concept of the proposed 2‐D controller is then introduced. Subsequently, by introducing the Lyapunov–Krasovskii function and adding a differential inequality to the Lyapunov function for the 2‐D system, sufficient conditions for the existence of the robust guaranteed cost controller are derived in terms of matrix inequalities. A design procedure for the controller is also presented. Furthermore, a convex optimization problem with linear matrix inequality (LMI) constraints is formulated to design the optimal guaranteed cost controller that minimizes the upper bound of the closed‐loop system cost. The proposed control law can stabilize the closed‐loop system as well as guarantee H performance level and a cost function with upper bounds for all admissible uncertainties. The results can be easily extended to the constant delay case. Finally, an illustrative example is given to demonstrate the effectiveness and advantages of the proposed 2‐D design approach. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2033–2045, 2013  相似文献   

2.
Based on Takagi–Sugeno (T–S) fuzzy models, a robust fuzzy model predictive control (MPC) algorithm is presented for a class of nonlinear time‐delay systems with input constraints. Delay‐dependent sufficient conditions for the robust stability of the closed‐loop system are derived, and the condition for the existence of the fuzzy model predictive controller is formulated in terms of nonlinear matrix inequality via the parallel distributed compensation (PDC) approach. By using a novel matrix transform technique, a receding optimization problem with linear matrix inequality (LMIs) constraints is constructed to design the desired controllers with an on‐line optimal receding horizon guaranteed cost. Finally, an example of continuous stirred tank reactors (CSTR) is given to demonstrate the effectiveness of the proposed results.  相似文献   

3.
范丽婷  王福利  李鸿儒 《化工学报》2013,64(7):2543-2549
引言在现代控制工程领域中,许多工业对象实际上是非线性分布参数系统。由于这类对象的复杂性,原始模型常常进行集中线性化处理后分析和设计控制系统,然而系统本质的分布特性以及非线性引起的模型失配将造成控制的失败。这种情况促使在先进控制中越来越多地直接采用非线性分布参数机理  相似文献   

4.
In this work, we develop model predictive control (MPC) designs, which are capable of optimizing closed‐loop performance with respect to general economic considerations for a broad class of nonlinear process systems. Specifically, in the proposed designs, the economic MPC optimizes a cost function, which is related directly to desired economic considerations and is not necessarily dependent on a steady‐state—unlike conventional MPC designs. First, we consider nonlinear systems with synchronous measurement sampling and uncertain variables. The proposed economic MPC is designed via Lyapunov‐based techniques and has two different operation modes. The first operation mode corresponds to the period in which the cost function should be optimized (e.g., normal production period); and in this operation mode, the MPC maintains the closed‐loop system state within a predefined stability region and optimizes the cost function to its maximum extent. The second operation mode corresponds to operation in which the system is driven by the economic MPC to an appropriate steady‐state. In this operation mode, suitable Lyapunov‐based constraints are incorporated in the economic MPC design to guarantee that the closed‐loop system state is always bounded in the predefined stability region and is ultimately bounded in a small region containing the origin. Subsequently, we extend the results to nonlinear systems subject to asynchronous and delayed measurements and uncertain variables. Under the assumptions that there exist an upper bound on the interval between two consecutive asynchronous measurements and an upper bound on the maximum measurement delay, an economic MPC design which takes explicitly into account asynchronous and delayed measurements and enforces closed‐loop stability is proposed. All the proposed economic MPC designs are illustrated through a chemical process example and their performance and robustness are evaluated through simulations. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

5.
Feedback control of hyperbolic distributed parameter systems   总被引:1,自引:0,他引:1  
Hyperbolic distributed parameter systems (DPS) represent a large number of industrial processes with spatially nonuniform operating variable profiles. Research has been conducted to develop high-performance control strategies for these systems by exploiting their high-fidelity models. In this paper, a feedback control method that yields improved performance is proposed for DPS modelled by first-order hyperbolic partial differential equations (PDEs) using the method of characteristics. Simulation results show that this method can provide effective control for the systems modelled by a scalar PDE as well as a system of PDEs. Further, it can efficiently compensate the effect of model-plant mismatch and effectively reject the disturbances.  相似文献   

6.
A method for the design of distributed model predictive control (DMPC) systems for a class of switched nonlinear systems for which the mode transitions take place according to a prescribed switching schedule is presented. Under appropriate stabilizability assumptions on the existence of a set of feedback controllers that can stabilize the closed‐loop switched, nonlinear system, a cooperative DMPC architecture using Lyapunov‐based model predictive control (MPC) in which the distributed controllers carry out their calculations in parallel and communicate in an iterative fashion to compute their control actions is designed. The proposed DMPC design is applied to a nonlinear chemical process network with scheduled mode transitions and its performance and computational efficiency properties in comparison to a centralized MPC architecture are evaluated through simulations. © 2013 American Institute of Chemical Engineers AIChE J, 59:860‐871, 2013  相似文献   

7.
In this work, we focus on distributed model predictive control of large scale nonlinear process systems in which several distinct sets of manipulated inputs are used to regulate the process. For each set of manipulated inputs, a different model predictive controller is used to compute the control actions, which is able to communicate with the rest of the controllers in making its decisions. Under the assumption that feedback of the state of the process is available to all the distributed controllers at each sampling time and a model of the plant is available, we propose two different distributed model predictive control architectures. In the first architecture, the distributed controllers use a one‐directional communication strategy, are evaluated in sequence and each controller is evaluated only once at each sampling time; in the second architecture, the distributed controllers utilize a bi‐directional communication strategy, are evaluated in parallel and iterate to improve closed‐loop performance. In the design of the distributed model predictive controllers, Lyapunov‐based model predictive control techniques are used. To ensure the stability of the closed‐loop system, each model predictive controller in both architectures incorporates a stability constraint which is based on a suitable Lyapunov‐based controller. We prove that the proposed distributed model predictive control architectures enforce practical stability in the closed‐loop system and optimal performance. The theoretical results are illustrated through a catalytic alkylation of benzene process example. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

8.
Kernel canonical variate analysis (KCVA) cannot be adopted for monitoring nonlinear time‐varying processes because of changes in variance, mean, and correlation between variables. Efficient recursive kernel canonical variate analysis (ERKCVA) is thus proposed to monitor the nonlinear time‐varying processes. In a high‐dimensional feature space, the covariance matrix can be updated recursively by the exponentially weighted moving average approach. The first‐order perturbation theory is introduced to obtain the recursive singular value decomposition of the Hankel matrix, which can significantly reduce the computational cost of the proposed method. Prediction errors and state variables are non‐Gaussian; thus, upper control limits can be derived from the estimated probability density function by kernel density estimation. The proposed method is demonstrated by simulating a continuous stirred tank reactor. Simulation results indicate that ERKCVA could efficiently capture the predefined normal and natural changes in nonlinear time‐varying processes. In addition, ERKCVA can also identify 4 types of sensor faults.  相似文献   

9.
The problem of feedback control of spatially distributed processes described by highly dissipative partial differential equations (PDEs) is considered. Typically, this problem is addressed through model reduction, where finite dimensional approximations to the original infinite dimensional PDE system are derived and used for controller design. The key step in this approach is the computation of basis functions that are subsequently utilized to obtain finite dimensional ordinary differential equation (ODE) models using the method of weighted residuals. A common approach to this task is the Karhunen‐Loève expansion combined with the method of snapshots. To circumvent the issue of a priori availability of a sufficiently large ensemble of PDE solution data, the focus is on the recursive computation of eigenfunctions as additional data from the process becomes available. Initially, an ensemble of eigenfunctions is constructed based on a relatively small number of snapshots, and the covariance matrix is computed. The dominant eigenspace of this matrix is then utilized to compute the empirical eigenfunctions required for model reduction. This dominant eigenspace is recomputed with the addition of each snapshot with possible increase or decrease in its dimensionality; due to its small dimensionality the computational burden is relatively small. The proposed approach is applied to representative examples of dissipative PDEs, with both linear and nonlinear spatial differential operators, to demonstrate its effectiveness of the proposed methodology. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

10.
In this paper, we pose and solve an adaptive extremum control problem to optimize the productivity of a van de Vusse reaction taking place in a tubular reactor governed by a set of nonlinear hyperbolic partial differential equations. Estimation and control algorithms that take into account control input constraints are developed by using a Lyapunov-based procedure, ensuring stability and convergence under a persistency of excitation condition. Here, we assume that the temperature information along the reactor is the only available on-line measurement to estimate the unmeasured objective function at the reactor exit. Numerical application of the proposed method shows that the resulting feedback algorithm steers the system to its optimum using a non-distributed jacket temperature actuation. The time evolution of the cost function is compared with an idealized distributed version of the algorithm presented previously.  相似文献   

11.
In this study, a predictive control system based on type Takagi‐Sugeno fuzzy models was developed for a polymerization process. Such processes typically have a highly nonlinear dynamic behavior causing the performance of controllers based on conventional internal models to be poor or to require considerable effort in controller tuning. The copolymerization of methyl methacrylate with vinyl acetate was considered for analysis of the performance of the proposed control system. A nonlinear mathematical model which describes the reaction plant was used for data generation and implementation of the controller. The modeling using the fuzzy approach showed an excellent capacity for output prediction as a function of dynamic data input. The performance of the projected control system and dynamic matrix control for regulatory and servo problems were compared and the obtained results showed that the control system design is robust, of simple implementation and provides a better response than conventional predictive control. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

12.
This work focuses on the development of computationally efficient predictive control algorithms for nonlinear parabolic and hyperbolic PDEs with state and control constraints arising in the context of transport-reaction processes. We first consider a diffusion-reaction process described by a nonlinear parabolic PDE and address the problem of stabilization of an unstable steady-state subject to input and state constraints. Galerkin’s method is used to derive finite-dimensional systems that capture the dominant dynamics of the parabolic PDE, which are subsequently used for controller design. Various model predictive control (MPC) formulations are constructed on the basis of the finite dimensional approximations and are demonstrated, through simulation, to achieve the control objectives. We then consider a convection-reaction process example described by a set of hyperbolic PDEs and address the problem of stabilization of the desired steady-state subject to input and state constraints, in the presence of disturbances. An easily implementable predictive controller based on a finite dimensional approximation of the PDE obtained by the finite difference method is derived and demonstrated, via simulation, to achieve the control objective.  相似文献   

13.
This work explores the design of a model predictive controller of the continuous pulp digester process consisting of the co-current zone and counter-current zone modeled by a set of nonlinear coupled hyperbolic partial differential equations (PDEs). The distributed parameter system of interest is not spectral, and slow–fast dynamic separation does not hold. To address this challenge, the nonlinear continuous-time model is linearized and discretized in time utilizing the Cayley–Tustin discretization framework, which ensures system theoretic properties and structure preservation without spatial discretization or model reduction. The discrete model is used in the full state model predictive controller design, which is augmented by the Luenberger observer design to achieve the output constrained regulation. Finally, a numerical example is provided to demonstrate the feasibility and applicability of the proposed controller designs.  相似文献   

14.
In this work a robust nonlinear scheme is proposed to control spatially distributed convective systems described by first-order hyperbolic partial differential equations by manipulating the flow velocity. The proposed scheme is designed after the method of characteristics is used to establish key structural properties of the system dynamics. The resulting feedback control, which can be seen as a proportional integral controller with variable integration time, does not require measurements for several axial points nor infinite dimensional state estimations. The proposed controller is applied successfully to two heat exchange simulation examples and a nonisothermical plug flow reactor. It is shown that it is robust in the face of uncertain parameters and load disturbances. Finally, the performance of the robust controller is compared to other control applications.  相似文献   

15.
This work provides a framework for linear model predictive control (MPC) of nonlinear distributed parameter systems (DPS), allowing the direct utilization of existing large‐scale simulators. The proposed scheme is adaptive and it is based on successive local linearizations of the nonlinear model of the system at hand around the current state and on the use of the resulting local linear models for MPC. At every timestep, not only the future control moves are updated but also the model of the system itself. A model reduction technique is integrated within this methodology to reduce the computational cost of this procedure. It follows the equation‐free approach (see Kevrekidis et al., Commun Math Sci. 2003;1:715–762; Theodoropoulos et al., Proc Natl Acad Sci USA. 2000;97:9840‐9843), according to which the equations of the model (and consequently of the simulator) need not be given explicitly to the controller. The latter forms a “wrapper” around an existing simulator using it in an input/output fashion. This algorithm is designed for dissipative DPS, dissipativity being a prerequisite for model reduction. The equation‐free approach renders the proposed algorithm appropriate for multiscale systems and enables it to handle large‐scale systems. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

16.
《Computers & Chemical Engineering》2006,30(11-12):2335-2345
This work focuses on the development of computationally efficient predictive control algorithms for nonlinear parabolic and hyperbolic PDEs with state and control constraints arising in the context of transport-reaction processes. We first consider a diffusion-reaction process described by a nonlinear parabolic PDE and address the problem of stabilization of an unstable steady-state subject to input and state constraints. Galerkin’s method is used to derive finite-dimensional systems that capture the dominant dynamics of the parabolic PDE, which are subsequently used for controller design. Various model predictive control (MPC) formulations are constructed on the basis of the finite dimensional approximations and are demonstrated, through simulation, to achieve the control objectives. We then consider a convection-reaction process example described by a set of hyperbolic PDEs and address the problem of stabilization of the desired steady-state subject to input and state constraints, in the presence of disturbances. An easily implementable predictive controller based on a finite dimensional approximation of the PDE obtained by the finite difference method is derived and demonstrated, via simulation, to achieve the control objective.  相似文献   

17.
An appropriate subsystem configuration is a prerequisite for a successful distributed control/state estimation design. Existing subsystem decomposition methods are not designed to handle simultaneous distributed estimation and control. In this article, we address the problem of subsystem decomposition of general nonlinear process networks for simultaneous distributed state estimation and distributed control based on community structure detection. A systematic procedure based on modularity is proposed. A fast folding algorithm that approximately maximizes the modularity is used in the proposed procedure to find candidate subsystem configurations. Two chemical process examples of different complexities are used to illustrate the effectiveness and applicability of the proposed approach. © 2018 American Institute of Chemical Engineers AIChE J, 65: 904–914, 2019  相似文献   

18.
This paper applies an optimization strategy for the design of a distributed wastewater network where multicomponent streams are considered. The streams are to be processed by different technologies for reducing the concentration of several contaminants to meet environmental regulations. The model gives rise to a nonconvex nonlinear and a heuristic search procedure is applied to find the global optimum or a good upper bound of the global optimum. The procedure is based on the successive solution of a relaxed linear model and the original nonconvex nonlinear problem and on the use of several objective functions in the relaxed model. Two examples are presented to illustrate that method.  相似文献   

19.
In this work, we consider distributed adaptive high‐gain extended Kalman filtering for nonlinear systems subject to data losses and delays in communications. Specifically, we consider a class of nonlinear systems that consist of several subsystems interacting with each other via their states. A local adaptive high‐gain extended Kalman filter is designed for each subsystem and the distributed estimators communicate to exchange the information. Each subsystem estimator takes the advantage of a predictor accounting for the delays and data losses simultaneously. The predictor of each subsystem is used to generate state predictions of interacting subsystems for interaction compensation. To get a reliable prediction, the predictors are designed based on a prediction‐update algorithm. The convergence of the proposed distributed state estimation is ensured under sufficient conditions handling communication delays and data losses. Finally, a chemical process example is used to evaluate the applicability and effectiveness of the proposed design. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4321–4333, 2016  相似文献   

20.
赵瑾  申忠宇  顾幸生 《化工学报》2008,59(7):1797-1802
针对一类不匹配不确定性动态系统,将不匹配不确定性的滑模控制方法与线性矩阵不等式(LMI)方法结合,设计一种新的鲁棒滑模观测器,提出了不匹配不确定动态系统滑模观测器稳定的充分必要条件以及LMI的存在定理,并证明了对系统不确定性以及外界干扰具有鲁棒性。无须对动态系统进行规范化处理,直接利用LMI方法求解鲁棒观测器增益矩阵,简化了滑模观测器设计过程。根据上述设计的鲁棒滑模观测器,应用等价输出误差介入原理和LMI方法,设计重构执行器故障的优化策略,提出在线获取故障信息的鲁棒执行器故障检测与重构方法,实现执行器故障的检测与重构。数字仿真验证了执行器故障重构方法的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号