首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Topographical patterns endow material surfaces with unique and intriguing physical and chemical properties. Spontaneously formed wrinkling has been harnessed to generate surface topography for various functionalities. Despite promising applications in biomedical devices and robot engineering, the friction behavior of wrinkling on curved surfaces remains unclear. Herein, wrinkled surfaces are induced by sputtering metals on soft polymer microspheres. The wrinkle morphologies and length scales can be controlled precisely by tailoring the microsphere radius (substrate curvature) and film thickness. The wrinkled surfaces exhibit controlled friction property, depending on the wrinkling patterns and length scales. An increase in friction force with increasing surface roughness is generally found for dimple patterns and labyrinth patterns. The dimple patterns show the lowest friction due to strong curvature constraint. The herringbone patterns exhibit apparent friction anisotropy with respect to topographic orientation. These results will guide future design of wrinkled surfaces for friction by harnessing substrate curvature.  相似文献   

2.
3.
4.
5.
6.
Pattern formation induced by wrinkling is a very common phenomenon exhibited in soft‐matter substrates. In all these systems, wrinkles develop in the presence of compressively stressed thin films lying on compliant substrates. Here, the controlled growth of self‐organized nanopatterns exploiting a wrinkling instability on a solid‐state substrate is demonstrated. Soda‐lime glasses are modified in the surface layers by a defocused ion beam, which triggers the formation of a compressively stressed surface layer deprived of alkali ions. When the substrate is heated up near its glass transition temperature, the wrinkling instability boosts the growth rate of the pattern by about two orders of magnitude. High‐aspect‐ratio anisotropic ripples bound by faceted ridges are thus formed, which represent an optimal template for guiding the growth of large‐area arrays of functional nanostructures. The engineering over large square centimeter areas of quasi‐1D arrays of Au nanostripe dimers endowed with tunable plasmonic response, strong optical dichroism, and high electrical conductivity is demonstrated. These peculiar functionalities allow these large‐area substrates to be exploited as active metamaterials in nanophotonics, biosensing, and optoelectronics.  相似文献   

7.
8.
While dynamic surface topographies are fabricated using liquid crystal (LC) polymers, switching between two distinct 3D topographies remains challenging. In this work, two switchable 3D surface topographies are created in LC elastomer (LCE) coatings using a two-step imprint lithography process. A first imprinting creates a surface microstructure on the LCE coating which is polymerized by a base catalyzed partial thiol-acrylate crosslinking step. The structured coating is then imprinted with a second mold to program the second topography, which is subsequently fully polymerized by light. The resulting LCE coatings display reversible surface switching between the two programmed 3D states. By varying the molds used during the two imprinting steps, diverse dynamic topographies can be achieved. For example, by using grating and rough molds sequentially, switchable surface topographies between a random scatterer and an ordered diffractor are achieved. Additionally, by using negative and positive triangular prism molds consecutively, dynamic surface topographies switching between two 3D structural states are achieved, driven by differential order/disorder transitions in the different areas of the film. It is anticipated that this platform of dynamic 3D topological switching can be used for many applications, including antifouling and biomedical surfaces, switchable friction elements, tunable optics, and beyond.  相似文献   

9.
Living systems can respond to external stimuli by dynamic interface changes. Moreover, natural wrinkle structures allow the surface to switch dynamically and reversibly from flat to rough in response to specific stimuli. Artificial wrinkle structures have been developed for applications such as optical devices, mechanical sensors, and microfluidic devices. However, chemical molecule‐triggered flexible sensors based on dynamic surface wrinkling have not been demonstrated. Inspired by human skin wrinkling, herein, a volatile organic compound (VOC)‐responsive flexible sensor with a switchable dual‐signal response (transparency and resistance) is achieved based on a multilayered Ag nanowire (AgNW)/SiOx/polydimethylsiloxane (PDMS) film. Wrinkle structures can form dynamically in response to VOC vapors (such as ethanol, toluene, acetone, formaldehyde, and methanol) due to the instability of the multilayer induced by their different swelling capabilities. By controlling the modulus of PDMS and the thickness of the SiOx layer, tunable sensitivities in resistance and transparency of the device are achieved. Additionally, the proximity mechanism of the solubility parameter is proposed, which explains the high selectivity of the device toward ethanol vapor compared with that of other VOCs well. This stimuli‐responsive sensor exhibits the dynamic visual feedback and the quantitative electrical signal, which provide a novel approach for developing smart flexible electronics.  相似文献   

10.
11.
12.
13.
Conjugated polymers are attractive in numerous biological applications because they are flexible, biocompatible, cost‐effective, solution‐processable, and electronic/ionic conductive. One interesting application is for controllable drug release, and this has been realized previously using organic electronic ion pumps. However, organic electronic ion pumps show high operating voltages and limited transportation efficiency. Here, the first report of low‐voltage‐controlled molecular release with a novel organic device based on a conjugated polymer poly(3‐hexylthiophene) is presented. The releasing rate of molecules can be accurately controlled by the duration of the voltage applied on the device. The use of a handy mobile phone to remotely control the releasing process and its application in delivering an anticancer drug to treat cancer cells are also successfully demonstrated. The working mechanism of the device is attributed to the unique switchable permeability of poly(3‐hexylthiophene) in aqueous solutions under a bias voltage that can tune the wettability of poly(3‐hexylthiophene) via oxidation or reduction processes. The organic devices are expected to find many promising applications for controllable drug delivery in biological systems.  相似文献   

14.
15.
为了研究表面粗糙度和基底效应对有机涂层纳米压入测试结果的影响,选择了基板相同、涂层厚度相同但材料不同的三种有机涂层样品进行表面粗糙度扫描和纳米压入测试。结果表明:纳米压入测试的基底效应受材料的影响,对于不同材料的涂层,基底效应出现的压入深度也不同;同种类型的涂层表面粗糙度越小,其纳米压入硬度值越低,同时表面粗糙度的降低使得纳米压入测试结果的重复性提高。  相似文献   

16.
17.
The ever‐growing technological demand for more advanced microelectronic and spintronic devices keeps catalyzing the idea of controlling magnetism with an electric field. Although voltage‐driven on/off switching of magnetization is already established in some magnetoelectric (ME) systems, often the coupling between magnetic and electric order parameters lacks an adequate reversibility, energy efficiency, working temperature, or switching speed. Here, the ME performance of a manganite supercapacitor composed of a ferromagnetic, spin‐polarized ultrathin film of La0.74Sr0.26MnO3 (LSMO) electrically charged with an ionic liquid electrolyte is investigated. Fully reversible, rapid, on/off switching of ferromagnetism in LSMO is demonstrated in combination with a shift in Curie temperature of up to 26 K and a giant ME coupling coefficient of ≈226 Oe V−1. The application of voltages of only ≈2 V results in ultralow energy consumptions of about 90 µJ cm−2. This work provides a step forward toward low‐power, high‐endurance electrical switching of magnetism for the development of high‐performance ME spintronics.  相似文献   

18.
In the context of sensing and transport control, nanopores play an essential role. Designing multifunctional nanopores and placing multiple surface functionalities with nanoscale precision remains challenging. Interface effects together with a combination of different materials are used to obtain local multifunctionalization of nanoscale pores within a model pore system prepared by colloidal templating. Silica inverse colloidal monolayers are first functionalized with a gold layer to create a hybrid porous architecture with two distinct gold nanostructures on the top surface as well as at the pore bottom. Using orthogonal silane‐ and thiol‐based chemistry together with a control of the wetting state allows individual addressing of the different locations within each pore resulting in nanoscale localized functional placement of three different functional units. Ring‐opening metathesis polymerization is used for inner silica‐pore wall functionalization. The hydrophobized pores create a Cassie–Baxter wetting state with aqueous solutions of thiols, which enables an exclusive functionalization of the outer gold structures. In a third step, an ethanolic solution able to wet the pores is used to self‐assemble a thiol‐containing initiator at the pore bottom. Subsequent controlled radical polymerization provides functionalization of the pore bottom. It is demonstrated that the combination of orthogonal surface chemistry and controlled wetting states can be used for the localized functionalization of porous materials.  相似文献   

19.
连漪  范洪远  王均  王琳琳 《材料导报》2016,30(22):91-94, 108
在不同表面粗糙度的L245钢表面获得Ni-Sn-P化学镀层。采用光学显微镜观察镀层的表面形貌;根据极化曲线、交流阻抗谱及浸泡腐蚀试验分析镀层耐蚀性。结果表明,较粗糙基体表面上的Ni-Sn-P镀层胞状物沿沟槽生长为条块状,当基体表面粗糙度Ra=0.147μm时,镀层的自腐蚀电流密度小,腐蚀速率相对较低;当基体表面粗糙度下降到Ra=0.053μm时,镀层致密性下降,耐蚀性最差。其原因是随着基体表面粗糙度的降低,镀层表面生长的条块状组织相互接合增多,产生孔隙的可能性增大。  相似文献   

20.
缩径成形受筒坯稳定性的影响,容易产生失稳起皱,很难成形出缩径量较大的零件.提出了采用粘性介质外压缩径工艺成形直径变化量较大的薄壁异形曲面筒形零件新方法.针对坯料端部约束和自由条件下的失稳起皱问题进行了试验和有限元模拟,分析了试件失稳起皱过程中几何形状和应力的变化规律.研究表明,约束坯料端部可以改善试件失稳起皱后的应力分布规律,有利于消除褶皱,在较高粘性介质压力条件下可以直接成形出缩径量为15%的试件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号