共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Conor M. Gomes Chang Liu Jeffrey A. Paten Samuel M. Felton Leila F. Deravi 《Advanced functional materials》2019,29(4)
An approach to build a chemomechatronic system inspired by self‐folding robots is described. This system, which comprises a protein‐based hydrogel bound to a low‐profile laminate, responds to different aqueous environments by undergoing geometric transformations. This response is dependent on the thickness and stiffness of the templating hydrogel, which directly regulates the diffusion of water into and out of the platform to initiate its reversible shape changes. When modified to include more complex geometries, these controllable shape changes can also be used to selectively trigger multiple folding events, illustrating a new platform for chemically initiated mechatronic devices. Together, these data show how compositionally discrete components are physically, chemically, and mechanically coupled together to generate a new actuator for biohybrid self‐folding systems. 相似文献
3.
Georgi Stoychev Lorenzo Guiducci Sébastien Turcaud John W. C. Dunlop Leonid Ionov 《Advanced functional materials》2016,26(42):7733-7739
Two important aspects of actuation behavior of stimuli‐responsive hydrogels are the complexity of the shape change and its speed. Here, it is shown that varying the shape of simple polymer bilayers can result in very complex and very fast spontaneous folding. The complexity and high folding rate arise from the choice of the shape and from the presence of inhomogeneous swelling within the thermoresponsive layer entrapped between the top hydrophobic layer and the substrate. In contrast to homogeneous swelling of a freestanding bilayer, which leads to a gradual increase of curvature throughout the whole bilayer, inhomogeneous swelling first results in complete rolling of the periphery of the film, which changes its mechanical properties and affects the subsequent morphing process. Further swelling of the thermoresponsive layer generates more stress that builds up until a buckling threshold is overcome, allowing very fast switching from the flat edge‐rolled configuration into a folded one. The research demonstrates how the introduction of holes into actuating bilayers gives rise not only to a novel geometric control over the folding fate of the films but also adds the ability to tune the rate of folding, through the careful selection of hole size, location, and shape. 相似文献
4.
Jie Wei Xiao‐Jie Ju Xiao‐Yi Zou Rui Xie Wei Wang Ying‐Mei Liu Liang‐Yin Chu 《Advanced functional materials》2014,24(22):3312-3323
Novel multi‐stimuli‐responsive microcapsules with adjustable controlled‐release characteristics are prepared by a microfluidic technique. The proposed microcapsules are composed of crosslinked chitosan acting as pH‐responsive capsule membrane, embedded magnetic nanoparticles to realize “site‐specific targeting”, and embedded temperature‐responsive sub‐microspheres serving as “micro‐valves”. By applying an external magnetic field, the prepared smart microcapsules can achieve targeting aggregation at specific sites. Due to acid‐induced swelling of the capsule membranes, the microcapsules exhibit higher release rate at specific acidic sites compared to that at normal sites with physiological pH. More importantly, through controlling the hydrodynamic size of sub‐microsphere “micro‐valves” by regulating the environment temperature, the release rate of drug molecules from the microcapsules can be flexibly adjusted. This kind of multi‐stimuli‐responsive microcapsules with site‐specific targeting and adjustable controlled‐release characteristics provides a new mode for designing “intelligent” controlled‐release systems and is expected to realize more rational drug administration. 相似文献
5.
Microscale, quasi‐2D Au–polymer brush composite objects are fabricated by a versatile, controllable process based on microcontact printing followed by brush growth and etching of the substrate. These objects fold into 3D microstructures in response to a stimulus: crosslinked poly(glycidyl methacrylate) (PGMA) brushes fold on immersion in MeOH, and poly(methacryloxyethyl trimethylammonium chloride) (PMETAC) brushes fold on addition of salt. Microcages and microcontainers are fabricated. A multistep microcontact printing process is also used to create sheets of Au–PGMA bilayer lines linked by a PGMA film, which fold into cylindrical tubes. The bending of these objects can be predicted, and hence predefined during the synthesis process by controlling the parameters of the gold layer, and of the polymer brush. 相似文献
6.
Flat, organic microstructures that can self‐fold into 3D microstructures are promising for tissue regeneration, for being capable of distributing living cells in 3D while forming highly complex, biomimetic architectures to assist cells in performing regeneration. However, the design of self‐folding microstructures is difficult due to a lack of understanding of the underlying formation mechanisms. This study helps bridge this gap by deciphering the dynamics of the self‐folding using a mass‐spring model. This numerical study reveals that self‐folding procedure is multi‐modal, which can become random and unpredictable by involving the interplays between internal stresses, external stimulation, imperfection, and self‐hindrance of the folding body. To verify the numerical results, bilayered, hydrogel‐based micropatterns capable of self‐folding are fabricated using inkjet‐printing and tested. The experimental and numerical results are consistent with each other. The above knowledge is applied to designing and fabricating self‐folding microstructures for tissue‐engineering, which successfully creates 3D, cell‐scaled, and biomimetic microstructures, such as microtubes, branched microtubes, and hollow spheres. Embedded in self‐folded microtubes, human mesenchymal stem cells proliferate and form linear cell‐organization mimicking the cell morphology in muscles and tendons. The above knowledge and study platforms can greatly contribute to the research on self‐folding microstructures and applications to tissue regeneration. 相似文献
7.
We prepared a novel multi‐functional dual‐layer polymer electrolyte by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate (LiPF6) solution. The first layer, based on a microporous polyethylene, is incompatible with a liquid electrolyte, and the second layer, based on poly (vinylidenefluoride‐co‐hexafluoropropylene), is submicroporous and compatible with an electrolyte solution. The maximum ionic conductivity is 7 × 10?3 S/cm at ambient temperature. A unit cell using the optimum polymer electrolyte showed a reversible capacity of 198 mAh/g at the 500th cycle, which was about 87% of the initial value. 相似文献
8.
Effective Photothermal Killing of Pathogenic Bacteria by Using Spatially Tunable Colloidal Gels with Nano‐Localized Heating Sources 下载免费PDF全文
Chun‐Wen Hsiao Hsin‐Lung Chen Zi‐Xian Liao Radhakrishnan Sureshbabu Hsu‐Chan Hsiao Shu‐Jyuan Lin Yen Chang Hsing‐Wen Sung 《Advanced functional materials》2015,25(5):721-728
Alternative approaches to treating subcutaneous abscesses—especially those associated with antibiotic‐resistant pathogenic bacterial strains—that eliminate the need for antibiotics are urgently needed. This work descibes a chitosan (CS) derivative with self‐doped polyaniline (PANI) side chains that can self‐assemble into micelles in an aqueous environment and be transformed into colloidal gels in a process that is driven by a local increase in pH. These self‐doped PANI micelles can be utilized as nano‐localized heat sources, remotely controllable using near‐infrared (NIR) light. To test the in vivo efficacy of the CS derivative as a photothermal agent, an aqueous solution thereof is directly injected at the site of infected abscesses in a mouse model. The injected polymer solution eventually becomes distributed over the acidic abscesses, forming colloidal gels when it meets the boundaries of healthy tissues. After treatment with an 808 nm laser, the colloidal gels convert NIR light into heat, causing the thermal lysis of bacteria and repairing the infected wound without leaving residual implanted materials. This approach has marked potential because it can provide colloidal gels with tunable spatial stability, limiting localized heating to the infected sites, and reducing thermal damage to the surrounding healthy tissues. 相似文献
9.
Mauri A. Kostiainen Christian Pietsch Richard Hoogenboom Roeland J. M. Nolte Jeroen J. L. M. Cornelissen 《Advanced functional materials》2011,21(11):2012-2019
Here a method is presented for the temperature‐switchable assembly of viral particles into large hierarchical complexes. Dual‐functional diblock copolymers consisting of poly(diethyleneglycol methyl ether methacrylate) (poly(DEGMA)) and poly((2‐dimethylamino)ethyl methacrylate) (poly(DMAEMA)) blocks self‐assemble electrostatically with cowpea chlorotic mottle virus (CCMV) particles into micrometer‐sized objects as a function of temperature. The poly(DMAEMA) block carries a positive charge, which can interact electrostatically with the negatively charged outer surface of the CCMV capsid. When the solution temperature is increased above 40 °C, to cross the cloud point temperature (Tcp) of the DEGMA block, the polymer chains collapse on the surface of the virus particle, which makes them partially hydrophobic, and consequently causes the formation of large hierarchical assemblies. Disassembly of the virus–polymer complexes can be induced by reducing the solution temperature below the Tcp, which allows the poly(DEGMA) blocks to rehydrate and free virus particles to be released. The assembly process is fully reversible and can sustain several heating–cooling cycles. Importantly, this method relies on reversible supramolecular interactions and therefore avoids the irreversible covalent modification of the particle surface. This study illustrates the potential of temperature‐responsive polymers for controlled binding and releasing of virus particles. 相似文献
10.
Wen‐Chia Huang Wen‐Hsuan Chiang Su‐Jen Lin Yu‐Jen Lan Hsin‐Lung Chen Chorng‐Shyan Chern Hsin‐Cheng Chiu 《Advanced functional materials》2012,22(11):2267-2275
Polymeric vesicles attained from the self‐assembly of distearin (a diacylglycerol lipid)‐conjugated poly(acrylic acid) (PAAc) with various distearin contents in the aqueous phase show the capability of control over the vesicular‐wall permeability to hydrophilic solutes of varying sizes by a simple manipulation of the external pH. The pH sensitivity of the vesicle membranes in size‐selective permeability is largely dependent upon the lipid content of copolymer. By the addition of CaCl2 in aqueous vesicle suspensions, the pH‐evolved assembly structure and the membrane permeability can be immobilized with promoted resistance to further pH alteration, along with an additional counterion screening effect that reduces the pH required for the onset of polar solutes of certain sizes to pass through the membranes. Small‐angle X‐ray scattering (SAXS) measurements of the vesicle structure in the aqueous phase indicate that the pH‐regulated permeability to polar solutes is virtually governed by the extent of hydration and swelling of the vesicle membranes, and the lipid residues within each vesicle wall are packed into the ≈4–5 repeating lamellar islet structure surrounded by PAAc segments. 相似文献
11.
Muhammad Hanafiah Nurmawati Parayil Kumaran Ajikumar Ravindranath Renu Suresh Valiyaveettil 《Advanced functional materials》2008,18(20):3213-3218
Fabrication of two and three‐dimensional nanostructures requires the development of new methodologies for the assembly of molecular/macromolecular objects on substrates in predetermined arrangements. Templated self‐assembly approach is a powerful strategy for the creation of materials from assembly of molecular components or nanoparticles. The present study describes the development of a facile, template directed self‐assembly of (metal/organic) nanomaterials into periodic micro‐ and nanostructures. The positioning and the organization of nanomaterials into spatially well‐defined arrays were achieved using an amphiphilic conjugated polymer‐aided, self‐organization process. Arrays of honeycomb patterns formed from conjugated C12PPPOH film with homogenous distribution of metal/organic nanomaterials. Our approach offers a straightforward and inexpensive method of preparation for hybrid thin films without environmentally controlled chambers or sophisticated instruments as compared to multistep micro‐fabrication techniques. 相似文献
12.
13.
Patrick van Rijn Murat Tutus Christine Kathrein Nathalie C. Mougin Hyunji Park Christopher Hein Marco P. Schürings Alexander Böker 《Advanced functional materials》2014,24(43):6762-6770
Self‐assembled membranes offer a promising alternative for conventional membrane fabrication, especially in the field of ultrafiltration. Here, a new pore‐making strategy is introduced involving stimuli responsive protein‐polymer conjugates self‐assembled across a large surface area using drying‐mediated interfacial self‐assembly. The membrane is flexible and assembled on porous supports. The protein used is the cage protein ferritin and resides within the polymer matrix. Upon denaturation of ferritin, a pore is formed which intrinsically is determined by the size of the protein and how it resides in the matrix. Due to the self‐assembly at interfaces, the membrane constitutes of only one layer resulting in a membrane thickness of 7 nm on average in the dry state. The membrane is stable up to at least 50 mbar transmembrane pressure, operating at a flux of about 21 000–25 000 L m?2 h?1 bar?1 and displayed a preferred size selectivity of particles below 20 nm. This approach diversifies membrane technology generating a platform for “smart” self‐assembled membranes. 相似文献
14.
Arif M. Abdullah Xiuling Li Paul V. Braun John A. Rogers K. Jimmy Hsia 《Advanced functional materials》2020,30(14)
Self‐assembly of 3D structures presents an attractive and scalable route to realize reconfigurable and functionally capable mesoscale devices without human intervention. A common approach for achieving this is to utilize stimuli‐responsive folding of hinged structures, which requires the integration of different materials and/or geometric arrangements along the hinges. It is demonstrated that the inclusion of Kirigami cuts in planar, hingeless bilayer thin sheets can be used to produce complex 3D shapes in an on‐demand manner. Nonlinear finite element models are developed to elucidate the mechanics of shape morphing in bilayer thin sheets and verify the predictions through swelling experiments of planar, millimeter‐scaled PDMS (polydimethylsiloxane) bilayers in organic solvents. Building upon the mechanistic understandings, The transformation of Kirigami‐cut simple bilayers into 3D shapes such as letters from the Roman alphabet (to make “ADVANCED FUNCTIONAL MATERIALS”) and open/closed polyhedral architectures is experimentally demonstrated. A possible application of the bilayers as tether‐less optical metamaterials with dynamically tunable light transmission and reflection behaviors is also shown. As the proposed mechanistic design principles could be applied to a variety of materials, this research broadly contributes toward the development of smart, tetherless, and reconfigurable multifunctional systems. 相似文献
15.
Anping Cao Roel J. H. van Raak Xinglong Pan Dirk J. Broer 《Advanced functional materials》2019,29(28)
Azobenzene‐containing liquid crystal polymer networks (LCNs) are developed for temperature‐ and light‐regulated gas permeation. The order in a chiral‐nematic LCN (LCN*) is found to be essential to couple the unique structure of the membrane and its gas permeation responses to external stimuli such as temperature and varying irradiation conditions. An LCN membrane polymerized in the isotropic phase exhibits enhanced N2 permeation with increasing temperature, like most traditional polymers, but barely responds to exposure with 455 and 365 nm light. In sharp contrast, a reversible decrease of N2 transport is observed for the LCN* membrane of exactly the same chemical composition, but molecularly ordered, when submitted to an elevated temperature. More importantly, alternating in situ illumination with 455 and 365 nm light modulates reversibly N2 permeation performance of the LCN* membrane, through the trans–cis isomerization of azo moieties. The authors postulate that, besides the anisotropic deformation of LCN*, the decreased order in LCN* membrane caused by external stimuli (i.e., increasing temperature or UV light illumination) is responsible for an inhibition of gas permeation. These results show potential applications of liquid crystal polymers in the gas transport and separation, and also contribute to the development of “smart” membranes. 相似文献
16.
17.
Room‐Temperature Self‐Healing and Recyclable Tough Polymer Composites Using Nitrogen‐Coordinated Boroxines 下载免费PDF全文
Chunyang Bao Yi‐Jun Jiang Houyu Zhang Xingyuan Lu Junqi Sun 《Advanced functional materials》2018,28(23)
In this paper, nitrogen‐coordinated boroxines are exploited for the fabrication of self‐healing and recyclable polymer composites with enhanced mechanical properties. The 3D polymer networks cross‐linked with nitrogen‐coordinated boroxines are first synthesized through the trimerization of ortho‐aminomethyl‐phenylboronic acid groups at the terminals of poly(propylene glycol) (PPG) chains, and subsequently, the mechanically robust polymer composites are fabricated by utilizing the complexation of nitrogen‐coordinated boroxine‐containing PPG (N‐boroxine‐PPG) with poly(acrylic acid) (PAA) and hydrogen‐bonding interactions between them. The N‐boroxine‐PPG is soft with a tensile strength of 0.19 MPa, whereas the tensile strengths of N‐boroxine‐PPG/PAA composites can be tailored to range from 1.7 to 12.7 MPa by increasing the PAA contents in the polymer composites. It is revealed that the amine ligands can facilitate the formation and dissociation of nitrogen‐coordinated boroxines at room temperature. Moreover, the reversibility of nitrogen‐coordinated boroxines and hydrogen‐bonding interactions enable multiple cycles of healing and recycling of the damaged N‐boroxine‐PPG/PAA composites. The healed and recycled N‐boroxine‐PPG/PAA polymer composites regain most of their mechanical strength. 相似文献
18.
Despite the advantages of semiconducting polymer nanoparticles (SPNs) over other inorganic nanoparticles for photoacoustic (PA) imaging, their synthetic method is generally limited to nanoprecipitation, which is likely to cause the issue of nanoparticle dissociation. The synthesis of near‐infrared (NIR) absorbing semiconducting polymer amphiphiles (SPAs) that can spontaneously self‐assemble into homogeneous nanoparticles for in vivo PA imaging is reported. As compared with their counterpart nanoparticles (SPN1) prepared through nanoprecipitation, SPAs generally have higher fluorescence quantum yields but similar size and PA brightness, making them superior over SPN1. Optical and simulation studies reveal that the poly(ethylene glycol) (PEG) grafting density plays a critical role in determining the packing of SP segments inside the core of nanoparticles, consequently affecting the optical properties. The small size and structurally stable nanostructure, in conjunction with a dense PEG shell, allow SPAs to passively target tumors of living mice after systemic administration, permitting both PA and fluorescence imaging of the tumors at signals that are ≈1.5‐fold higher than that of liver. This study thus not only provides the first generation of amphiphilic optically active polymers for PA imaging, but also highlights the molecular guidelines for the development of organic NIR imaging nanomaterials. 相似文献
19.
Hierarchical Self‐Assembly of a Dandelion‐Like Supramolecular Polymer into Nanotubes for use as Highly Efficient Aqueous Light‐Harvesting Systems 下载免费PDF全文
Dapeng Zhang Yannan Liu Yujiao Fan Chunyang Yu Yongli Zheng Haibao Jin Li Fu Yongfeng Zhou Deyue Yan 《Advanced functional materials》2016,26(42):7652-7661
A dandelion‐like supramolecular polymer (DSP) with a “sphere‐star‐parachute” topological structure consisting of a spherical hyperbranched core and many parachute‐like arms is constructed by the non‐covalent host–guest coupling between a cyclodextrin‐endcapped hyperbranched multi‐arm copolymer (host) and many functionalized adamantanes with each having three alkyl chain arms (guests). The obtained DSPs can further self‐assemble into nanotubes in water in a hierarchical way from vesicles to nanotubes through sequential vesicle aggregation and fusion steps. The nanotubes have a bilayer structure consisting of multiple “hydrophobic‐hyperbranched‐hydrophilic” layers. Such a structure is very useful for constructing a chlorosome‐like artificial aqueous light‐harvesting system, as demonstrated here, via the incorporation of hydrophobic 4‐(2‐hydroxyethylamino)‐7‐nitro‐2,1,3‐benzoxadiazole as donors inside the hyperbranched cores of the nanotubes and the hydrophilic Rhodamine B as the acceptors immobilized on the nanotube surfaces. This as‐prepared nanotube light harvesting system demonstrates unexpectedly high energy transfer efficiency (above 90%) in water. This extends supramolecular polymers with more complex topological structure, special self‐assembly behavior, and new functionality. 相似文献
20.
Fabrication of All‐Water‐Based Self‐Repairing Superhydrophobic Coatings Based on UV‐Responsive Microcapsules 下载免费PDF全文
Superhydrophobic coatings that are also self‐healing have drawn much attention in recent years for improved durability in practical applications. Typically, the release of the self‐healing agents is triggered by temperature and moisture change. In this study, UV‐responsive microcapsules are successfully synthesized by Pickering emulsion polymerization using titania (TiO2) and silica (SiO2) nanoparticles as the Pickering agents to fabricate all‐water‐based self‐repairing, superhydrophobic coatings. These coatings are environmentally friendly and can be readily coated on various substrates. Compared to conventional superhydrophobic coatings, these coatings can regenerate superhydrophobicity and self‐cleaning ability under UV light, mimicking the outdoor environment, after they are mechanically damaged or contaminated with organics. They can maintain the superhydrophobicity after multiple cycles of accelerated weathering tests. 相似文献