首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Today's state‐of‐the‐art phosphorescent organic light‐emitting diodes (PhOLEDs) must rely on the host‐guest doping technique to decrease triplet quenching and increase device efficiency. However, doping is a sophisticated device fabrication process. Here, a Pt(II)‐based complex with a near unity photoluminescence quantum yield and excellent electron transporting properties in the form of neat film is reported. Simplified doping‐free white PhOLED and yellow‐orange PhOLED based on this emitter achieve rather low operating voltages (2.2–2.4 V) and very high power efficiencies of approximately 80 lm W?1 (yellow‐orange) and 50 lm W?1 (white), respectively, without any light extraction enhancement. Furthermore, the efficient white device also exhibits high color stability. No color shift is observed during the entire operation of the device. Analysis of the device's operational mechanism has been postulated in terms of exciton and polaron formation and fate. It is found that using the efficient neat Pt(II)‐complex as a homogeneous emitting and electron transporting layer and an ambipolar blue emitter are determining factors for achieving such a high efficiency.  相似文献   

2.
Previous studies have identified triplet‐triplet annihilation and triplet‐polaron quenching as the exciton density‐dependent mechanisms which give rise to the efficiency roll‐off observed in phosphorescent organic light‐emitting devices (OLEDs). In this work, these quenching processes are independently probed, and the impact of the exciton recombination zone width on the severity of quenching in various OLED architectures is examined directly. It is found that in devices employing a graded‐emissive layer (G‐EML) architecture the efficiency roll‐off is due to both triplet‐triplet annihilation and triplet‐polaron quenching, while in devices which employ a conventional double‐emissive layer (D‐EML) architecture, the roll‐off is dominated by triplet‐triplet annihilation. Overall, the efficiency roll‐off in G‐EML devices is found to be much less severe than in the D‐EML device. This result is well accounted for by the larger exciton recombination zone measured in G‐EML devices, which serves to reduce exciton density‐driven loss pathways at high excitation levels. Indeed, a predictive model of the device efficiency based on the quantitatively measured quenching parameters shows the role a large exciton recombination zone plays in mitigating the roll‐off.  相似文献   

3.
This article describes the first systematic investigation of how the efficiency roll‐off in organic light‐emitting diodes (OLEDs) is influenced by the position and orientation of the emitter molecules within the OLED cavity. The efficiency roll‐off is investigated for two OLED stacks containing either the phosphorescent emitter Ir(MDQ)2(acac) or Ir(ppy)3 by varying the distance between emitter and metal cathode; a strong influence of emitter position and orientation on roll‐off is observed. The measurements are modeled by triplet‐triplet‐annihilation (TTA) theory yielding the critical current density and the TTA rate constant. It is found that Ir(MDQ)2(acac) shows the lowest roll‐off when the emitter is located in the first optical maximum of the electromagnetic field, whereas the roll‐off of the Ir(ppy)3 stack is lowest when the emitter is positioned closer to the metal cathode. Measurement and modeling of time‐resolved electroluminescence show that the different roll‐off behavior is due to the different orientation and the corresponding change of the decay rate of the emissive dipoles of Ir(MDQ)2(acac) and Ir(ppy)3. Finally, design principles are developed for optimal high‐brightness performance by modeling the roll‐off as a function of emitter‐cathode distance, emissive dipole orientation, and radiative efficiency.  相似文献   

4.
The efficiency roll‐off in blue phosphorescent organic light emitting diodes (OLEDs) using different carbazole compounds as the host is systematically studied. While there is no significant difference in device efficiency, OLEDs using ter‐carbazole as the host show a reduction in efficiency roll‐off at high luminance. Data from transient photoluminescence and electroluminescence measurements show that the lower triplet–triplet annihilation (TTA) and triplet–polaron quenching (TPQ) rates in devices with the ter‐carbazole host compared with other carbazole hosts are the reasons for this reduced efficiency roll‐off. It is also found that the host materials with low glass transition temperatures are more susceptible to the efficiency roll‐off problem.  相似文献   

5.
Recent studies have demonstrated that in thermally activated delayed fluorescence (TADF) materials, efficient reverse intersystem crossing occurs from nonradiative triplet exited states to radiative singlet excited states due to a small singlet–triplet energy gap. This reverse intersystem crossing significantly influences exciton annihilation processes and external quantum efficiency roll‐off in TADF based organic light‐emitting diodes (OLEDs). In this work, a comprehensive exciton quenching model is developed for a TADF system to determine singlet–singlet, singlet–triplet, and triplet–triplet annihilation rate constants. A well‐known TADF molecule, 3‐(9,9‐dimethylacridin‐10(9H)‐yl)‐9H‐xanthen‐9‐one (ACRXTN), is studied under intensity‐dependent optical and electrical pulse excitation. The model shows singlet–singlet annihilation dominates under optically excited decays, whereas singlet–triplet annihilation and triplet–triplet annihilation have strong contribution in electroluminescence decays under electrical pulse excitation. Furthermore, the efficiency roll‐off characteristics of ACRXTN OLEDs at steady state is investigated through simulation. Finally, singlet and triplet diffusion length are calculated from annihilation rate constants.  相似文献   

6.
Solution‐processed organic light‐emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) material as emitter have attracted much attention because of their low cost and high performance. However, exciton quench at the interface between the hole injection layer, poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and emitting layer (EML) in devices can lead to low device performance. Here, a novel high triplet energy (2.89 eV) and crosslinkable hole‐transporting material grafted with oxetane groups, N,N‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy)hexyloxy)phenyl)‐3,5‐di(9H‐carbazol‐9‐yl)benzenamine (Oxe‐DCDPA)), as crosslinked hole transport layer (HTL) into the interface of PEDOT:PSS layer and EML is proposed for prevention of exciton quenching, and among the reported devices with single HTL in solution‐processed TADF‐OLED, the highest external quantum efficiency (EQE)/luminous efficiency (ηL) of 26.1%/94.8 cd A?1 and 24.0%/74.0 cd A?1 are achieved for green emission (DACT‐II as emitter) and bluish‐green emission (DMAC‐TRZ as emitter), respectively. Further improvement, using double HTLs, composed of N,N′‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy))‐hexylphenyl)‐N,N′‐diphenyl‐4,4′‐diamine with high hole mobility and Oxe‐DCDPA with high triplet energy, leads to the highest EQE/ηL of 30.8%/111.9 cd A?1 and 27.2%/83.8 cd A?1 for green emission and bluish‐green emission, respectively. These two devices show the high maximum brightness of 81 100 and 70 000 cd m?2, respectively.  相似文献   

7.
High‐efficiency phosphorescent organic light‐emitting diodes (OLEDs) doped with Ir(ppy)2(acac) [bis(2‐phenylpyridine)iridium(III)‐acetylacetonate] in an exciplex forming co‐host have been optically analyzed. This emitter has a preferred orientation with the horizontal to vertical dipole ratio of 0.77:0.23 as compared to 0.67:0.33 in the isotropic case. Theoretical analysis based on the orientation factor (Θ, the ratio of the horizontal dipoles to total dipoles) and the photoluminescence quantum yield (qPL) of the emitter predicts that the maximum external quantum efficiency (EQE) of the OLEDs with this emitter is about 30%, which matches very well with the experimental data, indicating that the electrical loss of the OLEDs is negligible and the device structure can be utilized as a platform to demonstrate the validity of optical modeling. Based on the results, the maximum EQE achievable for a certain emitting dye in a host can be predicted by just measuring qPL and Θ in a neat film on glass without the need to fabricate devices, which offers a universal plot of the maximum EQE as a function of qPL and Θ.  相似文献   

8.
Highly efficient and stable blue phosphorescent organic light‐emitting diodes are achieved by employing a step‐wise graded doping of platinum(II) 9‐(pyridin‐2‐yl)‐2‐(9‐(pyridin‐2‐yl)‐9H‐carbazol‐2‐yloxy)‐9H‐carbazole (PtNON) in a device setting. A device employing PtNON demonstrates a high peak external quantum efficiency (EQE) of 17.4% with an estimated LT70 lifetime of over 1330 h at a brightness of 1000 cd m?2. PtNON is then investigated as a “triplet sensitizer” in an alternating donor–acceptor doped emissive layer to further improve the device emission color purity by carefully managing an efficient Förster resonant energy transfer from PtNON to 2,5,8,11‐tetra‐tert‐butylperylene as a selected acceptor material. Thus, such OLED devices demonstrate an EQE of 16.9% with color coordinates of (0.16, 0.25) and an estimated luminance (LT70) lifetime of 628 h at a high brightness of 1000 cd m?2.  相似文献   

9.
We study external quantum efficiency (ηEQE) roll-off in organic light-emitting diodes (OLEDs) using thermally-activated delayed fluorescence (TADF) of 4,5-di (9H-carbazol-9-yl) phthalonitrile (2CzPN). Using 2CzPN intramolecular rate constants from optical analyses, we construct an exciton quenching model incorporating intersystem crossing and reverse intersystem crossing. The model indicates that singlet–triplet annihilation and triplet–triplet annihilation dominate ηEQE roll-off because of the relatively long 2CzPN triplet lifetime of 273 μs. This work yields a method to relax the exciton quenching process in TADF based OLEDs.  相似文献   

10.
In an organic electroluminescent (EL) device, the recombination of injected holes and electrons produces what appears to be an ion‐pair or charge‐transfer (CT) exciton, and this CT exciton decays to produce one photon directly, or relaxes to a low‐lying local exciton (LE). Thus the full utilization of both the energy of the CT exciton and the LE should be a pathway for obtaining high‐efficiency EL. Here, a twisting donor‐acceptor (D‐A) triphenylamine‐imidazol molecule, TPA‐PPI, is reported: its synthesis, photophysics, and EL performance. Prepared by a manageable, one‐pot cyclizing reaction, TPA‐PPI exhibits deep‐blue emission with high quantum yields (90%) both in solution and in the solid state. Fluorescent solvatochromic experiments for TPA‐PPI solutions show a red‐shift of 57 nm (3032 cm?1) from low‐polarity hexane (406 nm) to high‐polarity acetonitrile (463 nm), accompanied by the gradual disappearance of the vibrational band in the spectra with increased solvent polarity. The photophysical investigation and DFT analysis suggest an intercrossed CT and LE excited state of the TPA‐PPI, originating from its twisting D‐A configuration. This is a rare instance that a CT‐state material shows highly efficient deep‐blue emission. EL characterization demonstrates that, as a deep‐blue emitter with CIE coordinates of (0.15, 0.11), the performance of a TPA‐PPI‐based device is rather excellent, displaying a maximum current efficiency of >5.0 cd A?1, and a maximum external quantum efficiency of >5.0%, corresponding to a maximum internal quantum efficiency of >25%. The effective utilization of the excitation energy arising from materials with intercrossed‐excited‐state (LE and CT) characters is thought to be beneficial for the improved efficiency of EL devices.  相似文献   

11.
High-quality hosts are indispensable for simultaneously realizing stable, high efficiency, and low roll-off blue solution-processed organic light-emitting diodes (OLEDs). Herein, three solution processable bipolar hosts with successively reduced triplet energies approaching the T1 state of thermally activated delayed fluorescence (TADF) emitter are developed and evaluated for high-performance blue OLED devices. The smaller T1 energy gap between host and guest allows the quenching of long-lived triplet excitons to reduce exciton concentration inside the device, and thus suppresses singlet-triplet and triplet-triplet annihilations. Triplet-energy-mediated hosts with high enough T1 and better charge balance in device facilitate high exciton utilization efficiency and uniform triplet exciton distribution among host and TADF guest. Benefited from these synergetic factors, a high maximum external quantum efficiency (EQEmax) of 20.8%, long operational lifetime (T50 of 398.3 h @ 500 cd m−2), and negligible efficiency roll-off (EQE of 20.1% @ 1000 cd m−2) are achieved for bluish-green TADF OLEDs. Additionally introducing a narrowband emission multiple-resonance TADF material as terminal emitter to accelerate exciton dynamic and improve exciton utilization, a higher EQEmax of 23.1%, suppressed roll-off and extended lifetime of 456.3 h are achieved for the sky-blue sensitized OLEDs at the same brightness.  相似文献   

12.
Fluorescent emitters have regained intensive attention in organic light emitting diode (OLED) community owing to the breakthrough of the device efficiency and/or new emitting mechanism. This provides a good chance to develop new near‐infrared (NIR) fluorescent emitter and high‐efficiency device. In this work, a D‐π‐A‐π‐D type compound with naphthothiadiazole as acceptor, namely, 4,4′‐(naphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diyl)bis(N,N ‐diphenylaniline) (NZ2TPA), is designed and synthesized. The photophysical study and density functional theory analysis reveal that the emission of the compound has obvious hybridized local and charge‐transfer (HLCT) state feature. In addition, the compound shows aggregation‐induced emission (AIE) characteristic. Attributed to its HLCT mechanism and AIE characteristic, NZ2TPA acquires an unprecedentedly high photoluminescent quantum yield of 60% in the neat film, which is the highest among the reported organic small‐molecule NIR emitters and even exceeds most phosphorescent NIR materials. The nondoped devices based on NZ2TPA exhibit excellent performance, achieving a maximum external quantum efficiency (EQE) of 3.9% with the emission peak at 696 nm and a high luminance of 6330 cd m?2, which are among the highest in the reported nondoped NIR fluorescent OLEDs. Moreover, the device remains a high EQE of 2.8% at high brightness of 1000 cd m?2, with very low efficiency roll‐off.  相似文献   

13.
Two host materials of {4‐[diphenyl(4‐pyridin‐3‐ylphenyl)silyl]phenyl}diphenylamine (p‐PySiTPA) and {4‐[[4‐(diphenylphosphoryl)phenyl](diphenyl)silyl]phenyl}diphenylamine (p‐POSiTPA), and an electron‐transporting material of [(diphenylsilanediyl)bis(4,1‐phenylene)]bis(diphenylphosphine) dioxide (SiDPO) are developed by incorporating appropriate charge transporting units into the tetraarylsilane skeleton. The host materials feature both high triplet energies (ca. 2.93 eV) and ambipolar charge transporting nature; the electron‐transporting material comprising diphenylphosphine oxide units and tetraphenylsilane skeleton exhibits a high triplet energy (3.21 eV) and a deep highest occupied molecular orbital (HOMO) level (‐6.47 eV). Using these tetraarylsilane‐based functional materials results in a high‐efficiency blue phosphorescent device with a three‐organic‐layer structure of 1,1‐bis[4‐[N,N‐di(p‐tolyl)‐amino]phenyl]cyclohexane (TAPC)/p‐POSiTPA: iridium(III) bis(4′,6′‐difluorophenylpyridinato)tetrakis(1‐pyrazolyl)borate (FIr6)/SiDPO that exhibits a forward‐viewing maximum external quantum efficiency (EQE) up to 22.2%. This is the first report of three‐organic‐layer FIr6‐based blue PhOLEDs with the forward‐viewing EQE over 20%, and the device performance is among the highest for FIr6‐based blue PhOLEDs even compared with the four or more than four organic‐layer devices. Furthermore, with the introduction of bis(2‐(9,9‐diethyl‐9H‐fluoren‐2‐yl)‐1‐phenyl‐1H‐benzoimidazol‐N,C3)iridium acetylacetonate [(fbi)2Ir(acac)] as an orange emitter, an all‐phosphor warm‐white PhOLED achieves a peak power efficiency of 47.2 lm W?1, which is close to the highest values ever reported for two‐color white PhOLEDs.  相似文献   

14.
Significant effort has been made to develop novel material systems to improve the efficiency of near‐infrared organic light‐emitting diodes (NIR OLEDs). Of those, fluorescent chromophores are mostly studied because of their advantages in cost and tunability. However, it is still rare for fluorescent NIR emitters to present good color purities in the NIR range and to have high external quantum efficiency (EQE). Here, a wedge‐shaped D‐π‐A‐π‐D emitter APDC‐DTPA with thermally activated delayed fluorescence property and a small single‐triplet splitting (ΔEst) of 0.14 eV is presented. The non‐doped NIR device exhibits excellent performance with a maximum EQE of 2.19% and a peak wavelength of 777 nm. Remarkably, when 10 wt% of APDC‐DTPA is doped in 1,3,5‐tris(1‐phenyl‐1H‐benzimidazol‐2‐yl)benzene host, an extremely high EQE of 10.19% with an emission peak of 693 nm is achieved. All these values represent the best result for NIR OLEDs based on a pure organic fluorescent emitter with similar device structure and color gamut.  相似文献   

15.
A new triphenylamine/oxadiazole hybrid, namely m‐TPA‐o‐OXD, formed by connecting the meta‐position of a phenyl ring in triphenylamine with the ortho‐position of 2,5‐biphenyl‐1,3,4‐oxadiazole, is designed and synthesized. The new bipolar compound is applicable in the phosphorescent organic light‐emitting diodes (PHOLEDs) as both host and exciton‐blocking material. By using the new material and the optimization of the device structures, very high efficiency green and yellow electrophosphorescence are achieved. For example, by introducing 1,3,5‐tris(N‐phenylbenzimidazol‐2‐yl)benzene (TPBI) to replace 2, 9‐dimethyl‐4,7‐diphenyl‐1, 10‐phenanthroline (BCP)/tris(8‐hydroxyquinoline)aluminium (Alq3) as hole blocking/electron transporting layer, followed by tuning the thicknesses of hole‐transport 1, 4‐bis[(1‐naphthylphenyl)amino]biphenyl (NPB) layer to manipulate the charge balance, a maximum external quantum efficiency (ηEQE,max) of 23.0% and a maximum power efficiency (ηp,max) of 94.3 lm W−1 are attained for (ppy)2Ir(acac) based green electrophosphorescence. Subsequently, by inserting a thin layer of m‐TPA‐o‐OXD as self triplet exciton block layer between hole‐transport and emissive layer to confine triplet excitons, a ηEQE,max of 23.7% and ηp,max of 105 lm W−1 are achieved. This is the highest efficiency ever reported for (ppy)2Ir(acac) based green PHOLEDs. Furthermore, the new host m‐TPA‐o‐OXD is also applicable for other phosphorescent emitters, such as green‐emissive Ir(ppy)3 and yellow‐emissive (fbi)2Ir(acac). A yellow electrophosphorescent device with ηEQE,max of 20.6%, ηc,max of 62.1 cd A−1, and ηp,max of 61.7 lm W−1, is fabricated. To the author’s knowledge, this is also the highest efficiency ever reported for yellow PHOLEDs.  相似文献   

16.
Efficiency roll‐off in blue organic light‐emitting diodes especially at high brightness still remains a vital issue for which the excitons density‐dependent mechanism of host materials takes most responsibility. Additionally, the efficiency roll‐off leads to high power consumption and reduces the operating lifetime because higher driving voltage and current are required. Here, by subtly modifying the triphenylamine to oxygen‐bridged quasi‐planar structure, a novel thermally activated delayed fluorescence type blue host Tri‐o‐2PO is successfully developed. Efficiency roll‐off based on Tri‐o‐2PO is ultralow with external quantum efficiency (EQE) just dropping by around 2% in the high luminance range from 1000 cd m?2 to 10 000 cd m?2. As expected, low turn‐on voltage (≈2.9 V) of device is also achieved, which is close to the theory limit value (≈2.62 V). Super‐high power efficiency (≈60 lm W?1) and EQE (>22%) are also achieved when utilizing Tri‐o‐2PO as host. Furthermore, two‐color warm‐white light with CIE of (0.45, 0.43) and correlated color temperature of 2921 K is also fabricated and a champion EQE of 21% is delivered. These excellent performances prove the strategy of bridging the triphenylamine to reduce ΔEst is validated and suggest the great potential of this novel skeleton.  相似文献   

17.
A new family of highly soluble electrophosphorescent dopants based on a series of tris‐cyclometalated iridium(III) complexes (14) of 2‐(carbazol‐3‐yl)‐4/5‐R‐pyridine ligands with varying molecular dipole strengths have been synthesized. Highly efficient, solution‐processed, single‐layer, electrophosphorescent diodes utilizing these complexes have been prepared and characterized. The high triplet energy poly(9‐vinylcarbazole) PVK is used as a host polymer doped with 2‐(4‐biphenylyl)‐5‐(4‐tert‐butyl‐phenyl)‐1,3,4‐oxadiazole (PBD) for electron transport. Devices with a current efficiency of 40 cd A?1 corresponding to an EQE of 12% can thus be achieved. The effect of the type and position of the substituent (electron‐withdrawing group (CF3) and electron‐donating group (OMe)) on the molecular dipole moment of the complexes has been investigated. A correlation between the absorption strength of the singlet metal‐to‐ligand charge‐transfer (1MLCT) transition and the luminance spectral red shift as a function of solvent polarity is observed. The strength of the transition dipole moments for complexes 1–4 has also been obtained from TD‐DFT computations, and is found to be consistent with the observed molecular dipole moments of these complexes. The relatively long lifetime of the excitons of the phosphorescence (microseconds) compared to the charge‐carrier scattering time (less than nanoseconds), allows the transition dipole moment to be considered as a “quasi permanent dipole”. Therefore, the carrier mobility is sufficiently affected by the long‐lived transition dipole moments of the phosphorescent molecules, which are randomly oriented in the medium. The dopant dipoles cause positional and energetic disorder because of the locally modified polarization energy. Furthermore, the electron‐withdrawing group CF3 induces strong carrier dispersion that enhances the electron mobility. Therefore, the strong transition dipole moment in complexes 3 and 4 perturbs both electron and hole mobilities, yielding a reduction in exciton formation and an increase in the device dark current, thereby decreasing the device efficiency.  相似文献   

18.
The triplet exciton and polaron dynamics in phosphorescent dye (PtOEP) blended polymer (MEH‐PPV) photovoltaic devices are investigated by quasi‐steady‐state photo‐induced absorption (PIA) spectroscopy. According to the low‐temperature PIA and photoluminescence (PL) results, the increase in strength of the triplet‐triplet (T1Tn) absorption of MEH‐PPV in the blend system originates from the triplet‐triplet energy transfer from PtOEP to MEH‐PPV. The PtOEP blended MEH‐PPV/C60 bilayer photovoltaic device shows a roughly 30%–40% enhancement in photocurrent and power‐conversion efficiency compared to the device without PtOEP. However, in contrast to the bilayer device results, the bulk heterojunction photovoltaic devices do not show a noticeable change in photocurrent and power‐conversion efficiency in the presence of PtOEP. The PIA intensity, originating from the polaron state, is only slightly higher (within the experimental error), indicating that carrier generation in the bulk heterojunction is not enhanced in the presence of PtOEP. The rate and probability of the exciton dissociation between PtOEP and PCBM is much faster and higher than that of the triplet‐triplet energy transfer between PtOEP and MEH‐PPV.  相似文献   

19.
To develop high‐performance thermally activated delayed fluorescence (TADF) exciplex emitters, a novel strategy of introducing a single‐molecule TADF emitter as one of the constituting materials has been presented. Such a new type of exciplex TADF emitter will have two reverse intersystem crossing (RISC) routes on both the pristine TADF molecules and the exciplex emitters, benefiting the utilization of triplet excitons. Based on a newly designed and synthesized single‐molecule TADF emitter MAC, a highly efficient exciplex emitter MAC:PO‐T2T has been obtained. The device based on MAC:PO‐T2T with a weight ratio of 7:3 exhibits a low turn‐on voltage of 2.4 V, high maximum efficiency of 52.1 cd A?1 (current efficiency), 45.5 lm W?1 (power efficiency), and 17.8% (external quantum efficiency, EQE), as well as a high EQE of 12.3% at a luminance of 1000 cd m?2. The device shows the best performance among reported organic light‐emitting devices based on exciplex emitters. Such high‐efficiency and low‐efficiency roll‐off should be ascribed to the additional reverse intersystem crossing process on the MAC molecules, showing the advantages of the strategy described in this study.  相似文献   

20.
The temperature dependence of luminescence from [Cu(dnbp)(DPEPhos)]BF4 (dnbp = 2,9‐di‐n‐butylphenanthroline, DPEPhos = bis[2‐(diphenylphosphino)phenyl]ether) in a poly(methyl methacrylate) (PMMA) film indicates the presence of long‐life green emission arising from two thermally equilibrated charge transfer (CT) excited states and one non‐equilibrated triplet ligand center (3LC) excited state. At room temperature, the lower triplet CT state is found to be the predominantly populated excited state, and the zero‐zero energy of this state is found to be 2.72 eV from the onset of its emission at 80 K. The tunable emission maximum of [Cu(dnbp)(DPEPhos)]BF4 in various hosts with different triplet energies is explained in terms of the multiple triplet energy levels of this complex in amorphous films. Using the high triplet energy charge transport material as a host and an exciton‐blocking layer (EBL), a [Cu(dnbp)(DPEPhos)]BF4 based organic light‐emitting diode (OLED) achieves a high external quantum efficiency (EQE) of 15.0%, which is comparable to values for similar devices based on Ir(ppy)3 and FIrpic. The photoluminescence (PL) and electroluminescence (EL) performance of green emissive [Cu(μI)dppb]2 (dppb = 1,2‐bis[diphenylphosphino]benzene) in organic semiconductor films confirmed its 3CT state with a zero‐zero energy of 2.76 eV as the predominant population excited state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号