首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Drug nanocrystals (NCs) are colloidal dispersions composed almost entirely of drug. As such, there is substantial interest in targeting them to diseased tissues, where they can locally deliver high doses of the therapeutic. However, because of their uncontrolled dissolution characteristics in vivo and uptake by the monomolecular phagocyte system, achieving tumor accumulation is challenging. To address these issues, a layer‐by‐layer approach is adopted to coat paclitaxel NCs with alternating layers of oppositely charged polyelectrolytes, using a PEGylated copolymer as the top layer. The coating successfully slows down dissolution in comparison to the noncoated NCs and to Abraxane (an approved paclitaxel nanoformulation), provides colloidal stability in physiologically relevant media, and has no intrinsic effect on cell viability at the concentrations tested. Nevertheless, their pharmacokinetic and biodistribution profile indicates that the NCs are rapidly cleared from the bloodstream followed by accumulation in the mononuclear phagocyte system organs (i.e., liver and spleen). This is hypothesized to be a consequence of the shedding of the PEGylated polyelectrolyte from the NCs' surface. While therapeutic efficacy was not investigated (due to poor tumor accumulation), overall, this work questions whether approaches that rely solely on electrostatic interactions for retaining coatings on the surfaces of NCs are appropriate for use in vivo.  相似文献   

11.
A long‐standing goal of DNA nanotechnology has been to assemble 3D crystals to be used as molecular scaffolds. The DNA 13‐mer, BET66, self‐assembles via Crick–Watson and noncanonical base pairs to form crystals. The crystals contain solvent channels that run through them in multiple directions, allowing them to accommodate tethered guest molecules. Here, the first example of biomacromolecular core–shell crystal growth is described, by showing that these crystals can be assembled with two or more discrete layers. This approach leads to structurally identical layers on the DNA level, but with each layer differentiated based on the presence or absence of conjugated guest molecules. The crystal solvent channels also allow layer‐specific postcrystallization covalent attachment of guest molecules. Through controlling the guest‐molecule identity, concentration, and layer thickness, this study opens up a new method for using DNA to create multifunctional periodic biomaterials with tunable optical, chemical, and physical properties.  相似文献   

12.
The solution‐processed layer‐by‐layer (LBL) method has potential to achieve high‐performance polymer solar cells (PSCs) due to its advantage of enriching donors near the anode and acceptors near the cathode. However, power conversion efficiencies (PCEs) of the LBL‐PSCs are still significantly lower than those of conventional one‐step‐processed PSCs (OS‐PSCs). A method to solve the critical problems in LBL‐PSCs is reported here. By employing a specific mixed solvent (o‐dichlorobenzene [o‐DCB]/tetrahydrofuran) to spin‐coat the small‐molecular acceptor IT‐4F onto a layer of the newly designed polymer donor (PBDB‐TFS1), appropriate interdiffusion between the PBDB‐TFS1 and the IT‐4F can critically be controlled, and then an ideal phase separation of the active layer and large donor/acceptor interface area can be realized with a certain amount of o‐DCB. The PSCs based on the LBL method exhibit PCEs as high as 13.0%, higher than that of the counterpart (11.8%) made by the conventional OS solution method. This preliminary work reveals that the LBL method is a promising approach to the promotion of the photovoltaic performance of polymer solar cells.  相似文献   

13.
Because nanoparticles are finding uses in myriad biomedical applications, including the delivery of nucleic acids, a detailed knowledge of their interaction with the biological system is of utmost importance. Here the size‐dependent uptake of gold nanoparticles (AuNPs) (20, 30, 50 and 80 nm), coated with a layer‐by‐layer approach with nucleic acid and poly(ethylene imine) (PEI), into a variety of mammalian cell lines is studied. In contrast to other studies, the optimal particle diameter for cellular uptake is determined but also the number of therapeutic cargo molecules per cell. It is found that 20 nm AuNPs, with diameters of about 32 nm after the coating process and about 88 nm including the protein corona after incubation in cell culture medium, yield the highest number of nanoparticles and therapeutic DNA molecules per cell. Interestingly, PEI, which is known for its toxicity, can be applied at significantly higher concentrations than its IC50 value, most likely because it is tightly bound to the AuNP surface and/or covered by a protein corona. These results are important for the future design of nanomaterials for the delivery of nucleic acids in two ways. They demonstrate that changes in the nanoparticle size can lead to significant differences in the number of therapeutic molecules delivered per cell, and they reveal that the toxicity of polyelectrolytes can be modulated by an appropriate binding to the nanoparticle surface.  相似文献   

14.
Extracellular matrix (ECM) cues have been widely investigated for their impact on cellular behavior. Among mechanics, physics, chemistry, and topography, different ECM properties have been discovered as important parameters to modulate cell functions, activating mechanotransduction pathways that can influence gene expression, proliferation or even differentiation. Particularly, ECM topography has been gaining more and more interest based on the evidence that these physical cues can tailor cell behavior. Here, an overview of bottom‐up and top‐down approaches reported to produce materials capable of mimicking the ECM topography and being applied for biomedical purposes is provided. Moreover, the increasing motivation of using the layer‐by‐layer (LbL) technique to reproduce these topographical cues is highlighted. LbL assembly is a versatile methodology used to coat materials with a nanoscale fidelity to the geometry of the template or to produce multilayer thin films composed of polymers, proteins, colloids, or even cells. Different geometries, sizes, or shapes on surface topography can imply different behaviors: effects on the cell adhesion, proliferation, morphology, alignment, migration, gene expression, and even differentiation are considered. Finally, the importance of LbL assembly to produce defined topographical cues on materials is discussed, highlighting the potential of micro‐ and nanoengineered materials to modulate cell function and fate.  相似文献   

15.
Polymeric materials formed via layer‐by‐layer (LbL) assembly have promise for use as drug delivery vehicles. These multilayered materials, both as capsules and thin films, can encapsulate a high payload of toxic or sensitive drugs, and can be readily engineered and functionalized with specific properties. This review highlights important and recent studies that advance the use of LbL‐assembled materials as therapeutic devices. It also seeks to identify areas that require additional investigation for future development of the field. A variety of drug‐loading methods and delivery routes are discussed. The biological barriers to successful delivery are identified, and possible solutions to these problems are discussed. Finally, state‐of‐the‐art degradation and cargo release mechanisms are also presented.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号