首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
对硫磷为模板分子,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,热引发沉淀聚合法合成对硫磷分子印迹聚合物(MIP)。通过计算机模拟和紫外分析阐述模板与功能单体的分子间作用;通过电镜观察和平衡吸附试验讨论引发剂用量与聚合物性质关系;通过吸附试验Scatchard分析测得最大吸附量为3.92μmol/g,平衡解离常数为91.7μmol/L,且具有较好的吸附特异性。该分子印迹聚合物性能优良,有望应用于环境中对硫磷的富集和检测。  相似文献   

4.
Molecularly imprinted polymers (MIPs) have recently emerged as robust and versatile artificial receptors. MIP synthesis is carried out in liquid phase and optimized on planar surfaces. Application of MIPs to nanostructured materials is challenging due to diffusion-limited transport of monomers within the nanomaterial recesses, especially when the aspect ratio is >10. Here, the room temperature vapor-phase synthesis of MIPs in nanostructured materials is reported. The vapor phase synthesis leverages a >1000-fold increase in the diffusion coefficient of monomers in vapor phase, compared to liquid phase, to relax diffusion-limited transport and enable the controlled synthesis of MIPs also in nanostructures with high aspect ratio. As proof-of-concept application, pyrrole is used as the functional monomer thanks to its large exploitation in MIP preparation; nanostructured porous silicon oxide (PSiO2) is chosen to assess the vapor-phase deposition of PPy-based MIP in nanostructures with aspect ratio >100; human hemoglobin (HHb) is selected as the target molecule for the preparation of a MIP-based PSiO2 optical sensor. High sensitivity and selectivity, low detection limit, high stability and reusability are achieved in label-free optical detection of HHb, also in human plasma and artificial serum. The proposed vapor-phase synthesis of MIPs is immediately transferable to other nanomaterials, transducers, and proteins.  相似文献   

5.
磁性分子印迹聚合物的制备与研究进展   总被引:1,自引:0,他引:1  
磁性纳米粒子以其优异的磁学性能,在分析化学、生物科学以及医学等领域逐渐发挥出越来越大的作用。磁性分子印迹聚合物是一类具有磁响应特性的聚合物,不仅具有特定的分子识别位点,而且在外加磁场作用下,容易分离回收。文中综述了近年来磁性分子印迹聚合物的研究状况,同时提出了目前该领域存在的问题和发展趋势。  相似文献   

6.
Molecularly imprinted polymers (MIPs) are chemical antibody mimics obtained by nanomoulding the 3D shape and chemical functionalities of a desired target in a synthetic polymer. Consequently, they possess exquisite molecular recognition cavities for binding the target molecule, often with specificity and affinity similar to those of antigen-antibody interactions. Research on MIPs targeting proteins began in the mid-90s, and this review will evaluate the progress made till now, starting from their synthesis in a monolith bulk format through surface imprinting to biocompatible soluble nanogels prepared by solid-phase synthesis. MIPs in the latter format will be discussed more in detail because of their tremendous potential of replacing antibodies in the biomedical domain like in diagnostics and therapeutics, where the workforce of antibodies is concentrated. Emphasis is also put on the development of epitope imprinting, which consists of imprinting a short surface-exposed fragment of a protein, resulting in MIPs capable of selectively recognizing the whole macromolecule, amidst others in complex biological media, on cells or tissues. Thus selecting the ‘best’ peptide antigen is crucial and in this context a rational approach, inspired from that used to predict peptide immunogens for peptide antibodies, is described for its unambiguous identification.  相似文献   

7.
8.
Billions of dollars are invested into the monoclonal antibody market every year to meet the increasing demand in clinical diagnosis and therapy. However, natural antibodies still suffer from poor stability and high cost, as well as ethical issues in animal experiments. Thus, developing antibody substitutes or mimics is a long‐term goal for scientists. The molecular imprinting technique presents one of the most promising strategies for antibody mimicking. The molecularly imprinted polymers (MIPs) are also called “molecularly imprinted synthetic antibodies” (MISAs). The breakthroughs of key technologies and innovations in chemistry and material science in the last decades have led to the rapid development of MISAs, and their molecular affinity has become comparable to that of natural antibodies. Currently, MISAs are undergoing a revolutionary transformation of their applications, from initial adsorption and separation to the rising fields of biomedicine. Herein, the fundamental chemical design of MISAs is examined, and then current progress in biomedical applications is the focus. Meanwhile, the potential of MISAs as qualified substitutes or even to transcend the performance of natural antibodies is discussed from the perspective of frontier needs in biomedicines, to facilitate the rapid development of synthetic artificial antibodies.  相似文献   

9.
10.
11.
分子印迹聚合物结合与识别能力的影响因素   总被引:1,自引:0,他引:1  
郑细鸣  涂伟萍 《材料导报》2004,18(10):57-59
分子印迹技术是近年来迅速发展起来的一种分子识别技术,被应用于色谱分离、固相萃取、药物分析、环境监测、仿生传感器、催化等领域.结合与识别能力是分子印迹聚合物的重要性能,详细分析了分子印迹聚合物结合与识别能力的影响因素.  相似文献   

12.
13.
14.
15.
Molecularly imprinted polymers (MIPs) are synthetic receptors with tailor-made recognition sites for target molecules. Their high affinity and selectivity, excellent stability, easy preparation, and low cost make them promising substitutes to biological receptors in many applications where molecular recognition is important. In particular, spherical MIP nanoparticles (or nanoMIPs) with diameters typically below 200 nm have drawn great attention because of their high surface-area-to-volume ratio, easy removal of templates, rapid binding kinetics, good dispersion and handling ability, undemanding functionalization and surface modification, and their high compatibility with various nanodevices and in vivo biomedical applications. Recent years have witnessed significant progress made in the preparation of advanced functional nanoMIPs, which has eventually led to the rapid expansion of the MIP applications from the traditional separation and catalysis fields to the burgeoning biomedical areas. Here, a comprehensive overview of key recent advances made in the preparation of nanoMIPs and their important biomedical applications (including immunoassays, drug delivery, bioimaging, and biomimetic nanomedicine) is presented. The pros and cons of each synthetic strategy for nanoMIPs and their biomedical applications are discussed and the present challenges and future perspectives of the biomedical applications of nanoMIPs are also highlighted.  相似文献   

16.
17.
18.
MicroRNAs (miRNAs) have been regarded as promising biomarkers for the diagnosis and prognosis of early‐stage cancer as their expression levels are associated with different types of human cancers. However, it is a challenge to produce low‐cost miRNA sensors, as well as retain a high sensitivity, both of which are essential factors that must be considered in fabricating nanoscale biosensors and in future biomedical applications. To address such challenges, we develop a complementary metal oxide semiconductor (CMOS)‐compatible SiNW‐FET biosensor fabricated by an anisotropic wet etching technology with self‐limitation which provides a much lower manufacturing cost and an ultrahigh sensitivity. This nanosensor shows a rapid (< 1 minute) detection of miR‐21 and miR‐205, with a low limit of detection (LOD) of 1 zeptomole (ca. 600 copies), as well as an excellent discrimination for single‐nucleotide mismatched sequences of tumor‐associated miRNAs. To investigate its applicability in real settings, we have detected miRNAs in total RNA extracted from lung cancer cells as well as human serum samples using the nanosensors, which demonstrates their potential use in identifying clinical samples for early diagnosis of cancer.  相似文献   

19.
The self‐assembly of molecularly precise nanostructures is widely expected to form the basis of future high‐speed integrated circuits, but the technologies suitable for such circuits are not well understood. In this work, DNA self‐assembly is used to create molecular logic circuits that can selectively identify specific biomolecules in solution by encoding the optical response of near‐field coupled arrangements of chromophores. The resulting circuits can detect label‐free, femtomole quantities of multiple proteins, DNA oligomers, and small fragments of RNA in solution via ensemble optical measurements. This method, which is capable of creating multiple logic‐gate–sensor pairs on a 2 × 80 × 80‐nm DNA grid, is a step toward more sophisticated nanoscale logic circuits capable of interfacing computers with biological processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号