首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a self‐assembly method for fabricating well‐ordered two‐dimensional (2D) and three‐dimensional (3D) colloidal crystal films. With a minute amount of a polystyrene colloidal suspension and without any special equipment, the proposed method can be used to rapidly deposit high‐quality colloidal crystal films over a large surface area. By controlling the lift‐up rate of the substrate, we modulate the meniscus thinning rate, which determines whether the colloidal particles are assembled into two or three dimensions. The proposed method can be used to fabricate not only monolayered colloidal crystals with colloidal particles of various sizes, but also multilayered colloidal crystals. In addition, the method enables us to fabricate binary colloidal crystals by consecutively depositing large and small particles.  相似文献   

2.
In this work we demonstrate a significant advance in the introduction of embedded defects in 3D photonic crystals by means of two‐photon polymerization. We have developed the ability to precisely position embedded defects with respect to the lattice of 3D photonic crystals by imaging the structure concurrently with two‐photon writing. Defects are written with near‐perfect lattice registration and at specifically defined depths within the crystal. The effect of precise defect position on the optical response is investigated for embedded planar cavities written in a photonic crystal. The experimental data are compared to spectra calculated using the Scalar Wave Approximation (SWA).  相似文献   

3.
Artificial defect engineering in 3D colloidal photonic crystals is of paramount importance in terms of device applications. Over the past few years, we have carried out a great deal of research on introducing artificial defects, including point, line, and planar defects, in 3D colloidal photonic crystals by using “bottom‐up” self‐assembly in combination with “top‐down” micromachining techniques. In this Feature Article, we summarize our research results regarding the engineering of artificial defects in self‐assembled 3D photonic crystals, along with other important research breakthroughs in the literature. The significant advancements in the engineering of defects as reviewed here together with the encouraging reports on the fabrication of perfect colloidal crystals without unwanted defects will collectively lead to technological applications of self‐assembled 3D photonic crystals in the near future.  相似文献   

4.
A scalable method for site‐selective, directed self‐assembly of colloidal opals on topologically patterned substrates is presented. Here, such substrate contains optical waveguides which couple to the colloidal crystal. The site‐selectivity is achieved by a capillary network, whereas the self‐assembly process is based on controlled solvent evaporation. In the deposition process, a suspension of colloidal microspheres is dispensed on the substrate and driven into the desired crystallization sites by capillary flow. The method has been applied to realize colloidal crystals from monodisperse dielectric spheres with diameters ranging from 290 to 890 nm. The method can be implemented in an industrial wafer‐scale process.  相似文献   

5.
The fabrication of three‐dimensional (3D) diamond photonic crystals with controllable nanoroughness (≤120 nm) on the surface from epoxy‐functionalized cyclohexyl polyhedral oligomeric silsesquioxanes (POSS) is reported. The nanoroughness is generated on the 3D network due to microphase separation of the polymer chain segments in a nonsolvent during the rinsing step in holographic lithography process. The degree of roughness can be tuned by the crosslinking density of the polymer network, which is dependent on the loading of photoacid generators, the exposure dosage, and the choice of developer and rinsing solvent. Because the nanoroughness size is small, it does not affect the photonic band gap position of the photonic crystal in the infrared region. The combination of periodic microstructure and nanoroughness, however, offers new opportunities to realize superhydrophobicity and enhanced dye adsorption in addition to the photon management in the 3D photonic crystal.  相似文献   

6.
Hexagonally arrayed structures of colloidal crystals with uniform surface are a good candidate for master molds to be used in soft lithography. Here, the fabrication of periodically arrayed nanostructures using poly(dimethylsiloxane) (PDMS) molds based on three‐dimensionally (3D) ordered colloidal crystals is reported. A robust, high‐quality 3D colloidal‐crystal master molds is prepared using the colloidal suspension containing a water‐soluble polymer. The surface patterns of the 3D colloidal crystals can then be transferred onto a polymer film via soft lithography, by means of the replication of the surface pattern with PDMS. Various hexagonally arrayed nanostructure patterns can be fabricated, including close‐packed and non‐close‐packed 2D arrays and honeycomb structures by the structural modification of the 3D colloidal‐crystal templates. The replicated hexagonally arrayed structures can also be used as templates for producing colloidal crystals with 2D superlattices.  相似文献   

7.
Evaporation‐induced self‐assembly of colloidal particles is one of the most versatile fabrication routes to obtain large‐area colloidal crystals; however, the formation of uncontrolled “drying cracks” due to gradual solvent evaporation represents a significant challenge of this process. While several methods are reported to minimize crack formation during evaporation‐induced colloidal assembly, here an approach is reported to take advantage of the crack formation as a patterning tool to fabricate microscopic photonic structures with controlled sizes and geometries. This is achieved through a mechanistic understanding of the fracture behavior of three different types of opal structures, namely, direct opals (colloidal crystals with no matrix material), compound opals (colloidal crystals with matrix material), and inverse opals (matrix material templated by a sacrificial colloidal crystal). This work explains why, while direct and inverse opals tend to fracture along the expected {111} planes, the compound opals exhibit a different cracking behavior along the nonclose‐packed {110} planes, which is facilitated by the formation of cleavage‐like fracture surfaces. The discovered principles are utilized to fabricate photonic microbricks by programming the crack initiation at specific locations and by guiding propagation along predefined orientations during the self‐assembly process, resulting in photonic microbricks with controlled sizes and geometries.  相似文献   

8.
As one of the most robust and versatile routes to fabricate ordered micro‐ and nanostructures, soft lithography has been extensively applied to pattern a variety of molecules, polymers, biomolecules, and nanomaterials. This paper provides an overview on recent developments employing soft lithography methods to pattern colloidal crystals and related nanostructure arrays. Lift‐up soft lithography and modified microcontact printing methods are applied to fabricate patterned and non‐close‐packed colloidal crystals with controllable lattice spacing and lattice structure. Combining selective etching, imprinting, and micromolding methods, these colloidal crystal arrays can be employed as templates for fabrication of nanostructure arrays. Realization of all these processes is favored by the solvent swelling, elasticity, thermodecomposition, and thermoplastic characteristics of polymer materials. Applications of these colloidal crystals and nanostructure arrays have also been explored, such as biomimetic antireflective surfaces, superhydrophobic coatings, surface‐enhanced Raman spectroscopy substrates, and so on.  相似文献   

9.
The self‐assembly of polystyrene dimer‐ and spherocylinder‐shaped colloids is achieved via controlled drying on glass and silicon substrates. 3D monoclinic colloidal crystal structures are determined from scanning electron microscopy images of sections prepared using focused ion‐beam (FIB) milling. Full photonic bandgaps between the eighth and ninth bands are found for a systematic range of colloidal dimer shapes explored with respect to the degree of constituent lobe fusion and radius ratio. The pseudogap between bands 2 and 3 for spherocylinder‐based monoclinic crystals is also probed using normal incidence reflection spectroscopy.  相似文献   

10.
Self‐assembly of different sized colloidal particles into multicomponent crystals results in novel material properties compared to the properties of the individual components alone. The formation of binary and, for the first time, ternary colloidal crystals through a simple and inexpensive confined‐area evaporation‐induced layer‐by‐layer (LBL) assembly method is reported. The proposed method produces high quality multicomponent colloidal crystal films over a broad range of particle size‐ratios and large surface areas (cm2) from silica/polystyrene colloidal suspensions of low concentration. By adjusting the size‐ratio and concentration of the colloidal particles, complex crystals of tunable stoichiometries are fabricated and their structural characteristics are further confirmed with reported crystal analogues. In addition, complex structures form as a result of the interplay of the template layer effect, the surface forces exerted by the meniscus of the drying liquid, the space filling principle, and entropic forces. Thus, this LBL approach is a versatile way to grow colloidal crystals with binary, ternary, or more complex structures.  相似文献   

11.
Photonic crystal (PC) films are prepared by precipitation of colloidal crystal seeds in supersaturated solution of particles, followed by crystal growth and structure fixing with photo‐polymerization. As the liquid monomer becomes a solid matrix, the highly concentrated particles are forced to precipitate into colloidal microcrystals in short time, and ‘polymerization‐induced colloidal assembly’ (PICA) is shown to be the major driving force to form colloidal crystals. PICA is intrinsically different from evaporation‐induced colloidal assembly, because the seed formation and crystal growth are separated into two independent steps, which makes the synthesis more flexible, controllable, and efficient. The PICA process is capable of quickly producing PC films with an ultra‐narrow bandgap, tunable thickness, and large size. Based on these characteristics and the blocking effect of the outer PC layer to the reflection signal of inner layer, a coding–decoding system is developed in which the film's composition and stacking sequence can be identified by its distinctive reflection spectrum.  相似文献   

12.
13.
利用乳液聚合方法制备了粒径约为262 nm的单分散聚苯乙烯(PS)微球。通过控制溶剂蒸发温度和液体表面下降的速度,用垂直沉积法较快速地制备出了在较大范围呈现很好有序性的密排结构聚苯乙烯胶体光子晶体,其在626 nm波长处存在光子带隙。在扫描电子显微镜(SEM)下,观察到该胶体光子晶体是面心立方(fcc)密排结构。实验结果表明,对于粒径为262 nm的聚苯乙烯微球,在温度为55℃,质量分数为0.3%的情况下,当液体表面下降的速度约为每天3 mm时,可以得到高质量的胶体光子晶体。这种高质量的胶体光子晶体可以为利用模板技术制备具有完全带隙的有序孔结构提供较理想的模板。  相似文献   

14.
15.
Efficient and large scale printing of photonic crystal patterns with multicolor, multigrayscale, and fine resolution is highly desired due to its application in smart prints, sensors, and photonic devices. Here, an electric‐field‐assisted multicolor printing is reported based on electrically responsive and photocurable colloidal photonic crystal, which is prepared by supersaturation‐induced self‐assembly of SiO2 particles in the mixture of propylene carbonate (PC) and trimethylolpropane ethoxylate triacrylate (ETPTA). This colloidal crystal suspension, named as E‐ink, has tunable structural color, controllable grayscale, and instantly fixable characteristics at the same time because the SiO2/ETPTA‐PC photonic crystal has metastable and reversible assembly as well as polymerizable features. Lithographical printing with photomask and maskless pixel printing techniques are developed respectively to efficiently prepare multicolor and high‐resolution photonic patterns using a single‐component E‐ink.  相似文献   

16.
17.
In this paper, a highly ordered three‐dimensional Co3O4@MnO2 hierarchical porous nanoneedle array on nickel foam is fabricated by a facile, stepwise hydrothermal approach. The morphologies evolution of Co3O4 and Co3O4@MnO2 nanostructures upon reaction times and growth temperature are investigated in detail. Moreover, the as‐prepared Co3O4@MnO2 hierarchical structures are investigated as anodes for both supercapacitors and Li‐ion batteries. When used for supercapacitors, excellent electrochemical performances such as high specific capacitances of 932.8 F g?1 at a scan rate of 10 mV s?1 and 1693.2 F g?1 at a current density of 1 A g?1 as well as long‐term cycling stability and high energy density (66.2 W h kg?1 at a power density of 0.25 kW kg?1), which are better than that of the individual component of Co3O4 nanoneedles and MnO2 nanosheets, are obtained. The Co3O4@MnO2 NAs are also tested as anode material for LIBs for the first time, which presents an improved performance with high reversible capacity of 1060 mA h g?1 at a rate of 120 mA g?1, good cycling stability, and rate capability.  相似文献   

18.
Fabrication of two and three‐dimensional nanostructures requires the development of new methodologies for the assembly of molecular/macromolecular objects on substrates in predetermined arrangements. Templated self‐assembly approach is a powerful strategy for the creation of materials from assembly of molecular components or nanoparticles. The present study describes the development of a facile, template directed self‐assembly of (metal/organic) nanomaterials into periodic micro‐ and nanostructures. The positioning and the organization of nanomaterials into spatially well‐defined arrays were achieved using an amphiphilic conjugated polymer‐aided, self‐organization process. Arrays of honeycomb patterns formed from conjugated C12PPPOH film with homogenous distribution of metal/organic nanomaterials. Our approach offers a straightforward and inexpensive method of preparation for hybrid thin films without environmentally controlled chambers or sophisticated instruments as compared to multistep micro‐fabrication techniques.  相似文献   

19.
The fabrication and characterization of two‐photon polymerized features written within and outside of colloidal crystals is presented. Two‐photon polymerization (TPP) response diagrams are introduced and developed to map the polymerization and damage thresholds for features written via modulated beam rastering. The use of tris[4‐(7‐benzothiazol‐2‐yl‐9,9‐diethylfluoren‐2‐yl)phenyl]amine (AF‐350) as an initiator for TPP is demonstrated for the first time and TPP response diagrams illustrate the polymerization window. These diagrams also demonstrate that the polymerization behavior within and outside of colloidal crystals is similar and electron microscopy reveals nearly identical resolution. Fluorescence confocal microscopy further enables visualization of non‐self‐supporting, three‐dimensional TPP features within self‐assembled photonic crystals. Finally, microspot spectroscopy is collected from a two‐photon feature written within a colloidal crystal and this is compared with simulation.  相似文献   

20.
One‐dimensional photonic crystals constructed from multilayered stacks of porous Si are used as sensors for gas‐phase volatile organic compounds (VOCs). The ability of a double‐stack structure to provide compensation for drift due to changing relative humidity (RH) is investigated. In this approach, two separate photonic crystals (dielectric stacks) are etched into a crystalline Si substrate, one on top of the other. The top stack is chemically modified to be hydrophobic (by hydrosilylation with dodecene) and the bottom stack is made hydrophilic (by hydrosilylation with undecylenic acid). It is shown that the optical spectrum of the double‐stack structure provides an effective means to discriminate VOCs from water vapor. In this approach, shifts in the peak frequencies from both photonic crystals are measured simultaneously. Because the two stacks respond differently to water and to VOC, the effect of changing humidity can be nulled by calculating the weighted difference between the two peak frequencies. Reliable determination of the concentration of VOC vapor in nitrogen over a range of RH values (25% < RH < 75%) is demonstrated. The ability of the double‐stack structure to discriminate between water vapor and VOCs is quantified for four different VOCs: toluene, dimethyl methylphosphonate (DMMP), heptane, and ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号