首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectral characteristics of polyfluorene (PF)‐based light‐emitting diodes (LEDs) containing a defined low concentration of either keto‐defects or of the polymer poly(9,9‐octylfluorene‐co‐benzothiadiazole) (F8BT) are presented. Both types of blend layers were tested in different device configurations with respect to the relative and absolute intensities of green and blue emission components. It is shown that blending hole‐transporting molecules into the emission layer at low concentration or incorporation of a suitable hole‐transporting layer reduces the green emission contribution in the electroluminescence (EL) spectrum of the PF:F8BT blend, which is similar to what is observed for the keto‐containing PF layer. We conclude that the keto‐defects in PF homopolymer layers mainly constitute weakly emissive electron traps, in agreement with the results of quantum‐mechanical calculations.  相似文献   

2.
New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized by Wang and co‐workers on p. 957. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue and orange emission from the corresponding emitting species. A single‐layer device has been fabricated that has performance characteristics roughly comparable to those of organic white‐light‐emitting diodes with multilayer device structures. New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue (λmax = 421 nm/445 nm) and orange emission (λmax = 564 nm) from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light‐emitting diodes (PLEDs) based on the single‐polymer systems has been investigated. The introduction of the highly efficient 4,7‐bis(4‐(N‐phenyl‐N‐(4‐methylphenyl)amino)phenyl)‐2,1,3‐benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single‐layer device fabricated in air (indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure‐white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m–2, luminance efficiency of 7.30 cd A–1, and power efficiency of 3.34 lm W–1 can be obtained. This device is approximately two times more efficient than that utilizing a single polyfluorene containing 1,8‐naphthalimide moieties, and shows remarkable improvement over the corresponding blend systems in terms of efficiency and color stability. Thermal treatment of the single‐layer device before cathode deposition leads to the further improvement of the device performance, with CIE coordinates of (0.35,0.34), turn‐on voltage of 3.5 V, luminance efficiency of 8.99 cd A–1, power efficiency of 5.75 lm W–1, external quantum efficiency of 3.8 %, and maximum brightness of 12 680 cd m–2. This performance is roughly comparable to that of white organic light‐emitting diodes (WOLEDs) with multilayer device structures and complicated fabrication processes.  相似文献   

3.
Light‐emitting diodes exhibiting efficient pure‐white‐light electroluminescence have been successfully developed by using a single polymer: polyfluorene derivatives with 1,8‐naphthalimide chromophores chemically doped onto the polyfluorene backbones. By adjusting the emission wavelength of the 1,8‐naphthalimide components and optimizing the relative content of 1,8‐naphthalimide derivatives in the resulting polymers, white‐light electroluminescence from a single polymer, as opposed to a polymer blend, has been obtained in a device with a configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(100 nm). The device exhibits Commission Internationale de l'Eclairage coordinates of (0.32,0.36), a maximum brightness of 11 900 cd m–2, a current efficiency of 3.8 cd A–1, a power efficiency of 2.0 lm W–1, an external quantum efficiency of 1.50 %, and quite stable color coordinates at different driving voltages, even at high luminances of over 5000 cd m–2.  相似文献   

4.
Alkoxy‐substituted poly(spirobifluorene)s and their copolymers with a triphenylamine derivative have been synthesized by Ni(0)‐mediated polymerization. The polymers were well soluble in common organic solvents. Pure blue‐light emissions without the long wavelength emission of poly(fluorene)s have been observed in the fluorescence spectra of polymer thin films. The light emitting diodes with a device configuration of ITO/PEDT:PSS(30 nm)/polymer(60 nm)/LiF(1 nm)/Al(100 nm) have been fabricated. The electroluminescence spectra showed the blue emissions without the long wavelength emission as observed in the fluorescence spectra. The relatively poor electroluminescence quantum yield of the homopolymer (0.017% @ 20 mA/cm2) with color coordinates of (0.16, 0.07) has been improved by the introduction of triphenylamine moiety, and the copolymer with triphenylamine derivative exhibited an electroluminescence quantum yield of 0.15 % at 20 mA/cm2 with color coordinates of (0.16, 0.08). Moreover, the introduction of polar side chains to the spirobifluorene moiety enhanced the device performance and led to the quantum yields of 0.6 to 0.7 % at 20 mA/cm2, although there was some expense of color purities.  相似文献   

5.
New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue (λmax = 421 nm/445 nm) and orange emission (λmax = 564 nm) from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light‐emitting diodes (PLEDs) based on the single‐polymer systems has been investigated. The introduction of the highly efficient 4,7‐bis(4‐(N‐phenyl‐N‐(4‐methylphenyl)amino)phenyl)‐2,1,3‐benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single‐layer device fabricated in air (indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure‐white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m–2, luminance efficiency of 7.30 cd A–1, and power efficiency of 3.34 lm W–1 can be obtained. This device is approximately two times more efficient than that utilizing a single polyfluorene containing 1,8‐naphthalimide moieties, and shows remarkable improvement over the corresponding blend systems in terms of efficiency and color stability. Thermal treatment of the single‐layer device before cathode deposition leads to the further improvement of the device performance, with CIE coordinates of (0.35,0.34), turn‐on voltage of 3.5 V, luminance efficiency of 8.99 cd A–1, power efficiency of 5.75 lm W–1, external quantum efficiency of 3.8 %, and maximum brightness of 12 680 cd m–2. This performance is roughly comparable to that of white organic light‐emitting diodes (WOLEDs) with multilayer device structures and complicated fabrication processes.  相似文献   

6.
MXenes (Ti3C2) are 2D transition‐metal carbides and carbonitrides with high conductivity and optical transparency. However, transparent MXene electrodes suitable for polymer light‐emitting diodes (PLEDs) have rarely been demonstrated. With the discovery of the excellent electrical stability of MXene under an alternating current (AC), herein, PLEDs that employ MXene electrodes and exhibit high performance under AC operation (AC MXene PLEDs) are presented. The PLED exhibits a turn‐on voltage, current efficiency, and brightness of 2.1 V, 7 cd A?1, and 12 547 cd m?2, respectively, when operated under AC with a frequency of 1 kHz. The results indicate that the undesirable electric breakdown associated with heat arising from the poor interface of the MXene with a hole transport layer in the direct‐current mode is efficiently suppressed by the transient injection of carriers accompanied by the alternating change of the electric polarity under the AC, giving rise to reliable light emission with a high efficiency. The solution‐processable MXene electrode can be readily fabricated on a flexible polymer substrate, allowing for the development of a mechanically flexible AC MXene PLED with a higher performance than flexible PLEDs employing solution‐processed nanomaterial‐based electrodes such as carbon nanotubes, reduced graphene oxide, and Ag nanowires.  相似文献   

7.
The first full‐color polymer organic light‐emitting diode (OLED) display is reported, fabricated by a direct photolithography process, that is, a process that allows direct structuring of the electroluminescent layer of the OLED by exposure to UV light. The required photosensitivity is introduced by attaching oxetane side groups to the backbone of red‐, green‐, and blue‐light‐emitting polymers. This allows for the use of photolithography to selectively crosslink thin films of these polymers. Hence the solution‐based process requires neither an additional etching step, as is the case for conventional photoresist lithography, nor does it rely on the use of prestructured substrates, which are required if ink‐jet printing is used to pixilate the emissive layer. The process allows for low‐cost display fabrication without sacrificing resolution: Structures with features in the range of 2 μm are obtained by patterning the emitting polymers via UV illumination through an ultrafine shadow mask. Compared to state‐of‐the‐art fluorescent OLEDs, the display prototype (pixel size 200 μm × 600 μm) presented here shows very good efficiency as well as good color saturation for all three colors. The application in solid‐state lighting is also possible: Pure white light [Commision Internationale de l'Éclairage (CIE) values of 0.33, 0.33 and color rendering index (CRI) of 76] is obtained at an efficiency of 5 cd A–1 by mixing the three colors in the appropriate ratio. For further enhancement of the device efficiency, an additional hole‐transport layer (HTL), which is also photo‐crosslinkable and therefore suitable to fabricate multilayer devices from solution, is embedded between the anode and the electroluminescent layer.  相似文献   

8.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

9.
Novel fluorene‐based blue‐light‐emitting copolymers with an ultraviolet‐blue‐light (UV‐blue‐light) emitting host and a blue‐light emitting component, 4‐N,N‐diphenylaminostilbene (DPS) have been designed and synthesized by using the palladium‐ catalyzed Suzuki coupling reaction. It was found that both copolymers poly [2,7‐(9,9‐dioctylfluorene)‐alt‐1,3‐(5‐carbazolphenylene)] (PFCz) DPS1 and PFCz‐DPS1‐OXD show pure blue‐light emission even with only 1 % DPS units because of the efficient energy transfer from the UV‐blue‐light emitting PFCz segments to the blue‐light‐emitting DPS units. Moreover, because of the efficient energy transfer/charge trapping in these copolymers, PFCz‐DPS1 and PFCz‐DPS1‐OXD show excellent device performance with a very stable pure blue‐light emission. By using a neutral surfactant poly[9,9‐bis(6'‐(diethanolamino)hexyl)‐fluorene] (PFN‐OH) as the electron injection layer, the device based on PFCz‐DPS1‐OXD5 with the configuration of ITO/PEDOT:PSS/PVK/polymer/PFN‐OH/Al showed a maximum quantum efficiency of 2.83 % and a maximum luminous efficiency of 2.50 cd A–1. Its CIE 1931 chromaticity coordinates of (0.156, 0.080) match very well with the NTSC standard blue pixel coordinates of (0.14, 0.08). These results indicate that this kind of dopant/host copolymer could be a promising candidate for blue‐light‐emitting polymers with high efficiency, good color purity, and excellent color stability.  相似文献   

10.
White organic light‐emitting diodes (WOLEDs) are currently under intensive research and development worldwide as a new generation light source to replace problematic incandescent bulbs and fluorescent tubes. One of the major challenges facing WOLEDs has been to achieve high energy efficiency and high color rendering index simultaneously to make the technology competitive against other alternative technologies such as inorganic LEDs. Here, an all‐phosphor, four‐color WOLEDs is presented, employing a novel device design principle utilizing molecular energy transfer or, specifically, triplet exciton conversion within common organic layers in a cascaded emissive zone configuration to achieve exceptional performance: an 24.5% external quantum efficiency (EQE) at 1000 cd/m2 with a color rendering index (CRI) of 81, and an EQE at 5000 cd/m2 of 20.4% with a CRI of 85, using standard phosphors. The EQEs achieved are the highest reported to date among WOLEDs of single or multiple emitters possessing such high CRI, which represents a significant step towards the realization of WOLEDs in solid‐state lighting.  相似文献   

11.
Nanostructured oxide arrays have received significant attention as charge injection and collection electrodes in numerous optoelectronic devices. Zinc oxide (ZnO) nanorods have received particular interest owing to the ease of fabrication using scalable, solution processes with a high degree of control of rod dimension and density. Here, vertical ZnO nanorods as electron injection layers in organic light emitting diodes are implemented for display and lighting purposes. Implementing nanorods into devices with an emissive polymer, poly(9,9‐dioctyluorene‐alt‐benzothiadiazole) (F8BT) and poly(9,9‐di‐n‐octylfluorene‐alt‐N‐(4‐butylphenyl)dipheny‐lamine) (TFB) as an electron blocking layer, brightness and efficiencies up to 8602 cd m?2 and 1.66 cd A?1 are achieved. Simple solution processing methodologies combined with postdeposition thermal processing are highlighted to achieve complete wetting of the nanorod arrays with the emissive polymer. The introduction of TFB to minimize charge leakage and nonradiative exciton decay results in dramatic increases to device yields and provides an insight into the operating mechanism of these devices. It is demonstrated that the detected emission originates from within the polymer layers with no evidence of ZnO band edge or defect emission. The work represents a significant development for the ongoing implementation of ZnO nanorod arrays into efficient light emitting devices.  相似文献   

12.
A solution‐based fabrication of flexible and light‐weight light‐emitting devices on paper substrates is reported. Two different types of paper substrates are coated with a surface‐emitting light‐emitting electrochemical cell (LEC) device: a multilayer‐coated specialty paper with an intermediate surface roughness of 0.4 μm and a low‐end and low‐cost copy paper with a large surface roughness of 5 μm. The entire device fabrication is executed using a handheld airbrush, and it is notable that all of the constituent layers are deposited from solution under ambient air. The top‐emitting paper‐LECs are highly flexible, and display a uniform light emission with a luminance of 200 cd m?2 at a current conversion efficacy of 1.4 cd A?1.  相似文献   

13.
Photochemically induced emission tuning for the definition of pixels emitting the three primary colors, red, green, blue (RGB), in a single conducting polymeric layer is investigated. The approach proposed is based on an acid‐induced emission shift of the (1‐[4‐(dimethylamino)phenyl]‐6‐phenylhexatriene) (DMA‐DPH) green emitter and acid‐induced quenching of the red fluorescent emitter (4‐dimethylamino‐4′‐nitrostilbene) (DANS). The two emitters are dispersed in the wide bandgap conducting polymer poly(9‐vinylcarbazole) (PVK), along with a photoacid generator (PAG). In the unexposed film areas, red emission is observed because of efficient energy transfer from PVK and DMA‐DPH to DANS. Exposure of selected areas of the film at different doses results in quenching of the red emitter's fluorescence and the formation of green, blue, or even other color‐emitting pixels, depending on the exposure dose and the relative concentrations of the different compounds in the film. Organic light‐emitting diodes having the PVK polymer containing the appropriate amounts of DMA‐DPH, DANS, and PAG as the emitting layer are fabricated and electroluminescence spectra are recorded. The time stability of induced emission spectrum changes and the color stability during device operation are also examined, and the first encouraging results are obtained.  相似文献   

14.
Phosphorescent organic light emitting diodes (PHOLEDs) have undergone tremendous growth over the past two decades. Indeed, they are already prevalent in the form of mobile displays, and are expected to be used in large‐area flat panels recently. To become a viable technology for next generation solid‐state light source however, PHOLEDs face the challenge of achieving concurrently a high color rendering index (CRI) and a high efficiency at high luminance. To improve the CRI of a standard three color white PHOLED, one can use a greenish‐yellow emitter to replace the green emitter such that the gap in emission wavelength between standard green and red emitters is eliminated. However, there are relatively few studies on greenish‐yellow emitters for PHOLEDs, and as a result, the performance of greenish‐yellow PHOLEDs is significantly inferior to those emitting in the three primary colors, which are driven strongly by the display industry. Herein, a newly synthesized greenish‐yellow emitter is synthesized and a novel device concept is introduced featuring interzone exciton transfer to considerably enhance the device efficiency. In particular, high external quantum efficiencies (current efficiencies) of 21.5% (77.4 cd/A) and 20.2% (72.8 cd/A) at a luminance of 1000 cd/m2 and 5000 cd/m2, respectively, have been achieved. These efficiencies are the highest reported to date for greenish‐yellow emitting PHOLEDs. A model for this unique design is also proposed. This design could potentially be applied to enhance the efficiency of even longer wavelength yellow and red emitters, thereby paving the way for a new avenue of tandem white PHOLEDs for solid‐state lighting.  相似文献   

15.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

16.
In response to the call for a physiologically‐friendly light at night that shows low color temperature, a candle light‐style organic light emitting diode (OLED) is developed with a color temperature as low as 1900 K, a color rendering index (CRI) as high as 93, and an efficacy at least two times that of incandescent bulbs. In addition, the device has a 80% resemblance in luminance spectrum to that of a candle. Most importantly, the sensationally warm candle light‐style emission is driven by electricity in lieu of the energy‐wasting and greenhouse gas emitting hydrocarbon‐burning candles invented 5000 years ago. This candle light‐style OLED may serve as a safe measure for illumination at night. Moreover, it has a high color rendering index with a decent efficiency.  相似文献   

17.
Organic single crystals with much higher carrier mobility and stability compared to the amorphous organic materials have shown great potential in electronic and optoelectronic devices. However, their applications in white organic light‐emitting devices (WOLEDs), especially the three‐color‐strategy WOLEDs, have been hindered by the difficulties in fabricating complicated device structures. Here, double‐doped white‐emission organic single crystals are used as the active layers for the first time in the three‐color‐strategy WOLEDs by co‐doping the red and green dopants into blue host crystals. Precise control of the dopant concentration in the double‐doped crystals results in moderately partial energy transfer from the blue donor to the green and red dopants, and thereafter, simultaneous RGB emissions with balanced emission intensity. The highest color‐rendering index (CRI) and efficiency, to the best of the authors' knowledge, are obtained for the crystal‐based WOLEDs. The CRI of the WOLEDs varies between 80 and 89 with the increase of the driving current, and the luminance and current efficiency reach up to 793 cd m?2 and 0.89 cd A?1, respectively. The demonstration of the present three‐color organic single‐crystal‐based WOLED promotes the development of the single crystals in optoelectronics.  相似文献   

18.
The aggregation‐induced emission (AIE) phenomenon is important in organic light‐emitting diodes (OLEDs), for it can potentially solve the aggregation‐caused quenching problem. However, the performance of AIE fluorophor‐based OLEDs (AIE OLEDs) is unsatisfactory, particularly for deep‐blue devices (CIEy < 0.15). Here, by enhancing the device engineering, a deep‐blue AIE OLED exhibits low voltage (i.e., 2.75 V at 1 cd m?2), high luminance (17 721 cd m?2), high efficiency (4.3 lm W?1), and low efficiency roll‐off (3.6 lm W?1 at 1000 cd m?2), which is the best deep‐blue AIE OLED. Then, blue AIE fluorophors, for the first time, have been demonstrated to achieve high‐performance hybrid white OLEDs (WOLEDs). The two‐color WOLEDs exhibit i) stable colors and the highest efficiency among pure‐white hybrid WOLEDs (32.0 lm W?1); ii) stable colors, high efficiency, and very low efficiency roll‐off; or iii) unprecedented efficiencies at high luminances (i.e., 70.2 cd A?1, 43.4 lm W?1 at 10 000 cd m?2). Moreover, a three‐color WOLED exhibits wide correlated color temperatures (10 690–2328 K), which is the first hybrid WOLED showing sunlight‐style emission. These findings will open a novel concept that blue AIE fluorophors are promising candidates to develop high‐performance hybrid WOLEDs, which have a bright prospect for the future displays and lightings.  相似文献   

19.
The ability to control organic‐organic interfaces in conjugated polymer blends is critical for further device improvement. Here, we control the phase separation in blends of poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) (F8BT) and poly(9,9‐di‐n‐octylfluorene‐alt‐(1,4‐phenylene‐((4‐sec‐butylphenyl)imino)‐1,4‐phenylene) (TFB) via chemical modification of the substrate by microcontact printing of octenyltrichlorosilane molecules. The lateral phase‐separated structures in the blend film closely replicate the underlying micrometer‐scale chemical pattern. We found nanometer‐scale vertical segregation of the polymers within both lateral domains, with regions closer to the substrate being substantially pure phases of either polymer. Such phase separation has important implications for the performance of light‐emitting diodes fabricated using these patterned blend films. In the absence of a continuous TFB wetting layer at the substrate interface, as typically formed in spin‐coated blend films, charge carrier injection is confined in the well‐defined TFB‐rich domains. This confinement leads to high electroluminescence efficiency, whereas the overall reduction in the roughness of the patterned blend film results in slower decay of device efficiency at high voltages. In addition, the amount of surface out‐coupling of light in the forward direction observed in these blend devices is found to be strongly correlated to the distribution of periodicity of the phase‐separated structures in the active layer.  相似文献   

20.
Despite the promising expectations of poly(fluorene) (PF)‐type materials as efficient blue‐light‐emitting polymers, the devices based on these materials are not yet fully utilized. Under prolonged operation of the devices, the PF‐type materials undergo degradation with the appearance of a long‐range emission around 2.2–2.3 eV. As a consequence, the emissive color changes from blue to green with a decrease in the device efficiency. Here, an innovative approach that leads to a new blue‐emitting polymer with remarkable color stability is reported. By modifying the chemical structure of PF to inhibit the formation of keto defects, it is demonstrated that the devices exhibit excellent color stability. This new blue‐emitting polymer, poly(2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta‐[def]phenanthrene)) (PCPP), emits a stabilized, efficient blue electroluminescence without exhibiting any peak in the long‐wavelength region even after prolonged operation of the devices in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号