首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid materials in optoelectronic devices can generate new functionality or provide synergistic effects that enhance the properties of each component. Here, high‐performance phototransistors with broad spectral responsivity in UV–vis–near‐infrared (NIR) regions, using gold nanorods (Au NRs)‐decorated n‐type organic semiconductor and N ,N ′‐bis(2‐phenylethyl)‐perylene‐3,4:9,10‐tetracarboxylic diimide (BPE‐PTCDI) nanowires (NWs) are reported. By way of the synergistic effect of the excellent photo‐conducting characteristics of single‐crystalline BPE‐PTCDI NW and the light scattering and localized surface plasmon resonances (LSPR) of Au NRs, the hybrid system provides new photo‐detectivity in the NIR spectral region. In the UV–vis region, hybrid nanomaterial‐based phototransistors exhibit significantly enhanced photo‐responsive properties with a photo‐responsivity (R ) of 7.70 × 105 A W?1 and external quantum efficiency (EQE) of 1.42 × 108% at the minimum light intensity of 2.5 µW cm?2, which are at least tenfold greater than those of pristine BPE‐PTCDI NW‐based ones and comparable to those of high‐performance inorganic material‐based devices. While a pristine BPE‐PTCDI NW‐based photodetector is insensitive to the NIR spectral region, the hybrid NW‐based phototransistor shows an R of 10.7 A W?1 and EQE of 1.35 × 103% under 980 nm wavelength‐NIR illumination. This work demonstrates a viable approach to high‐performance photo‐detecting systems with broad spectral responsivity.  相似文献   

2.
Organic nonvolatile transistor‐type memory (ONVM) devices are developed using self‐assembled nanowires of n‐type semiconductor, N,N′‐bis(2‐phenylethyl)‐perylene‐3,4:9,10‐tetracarboxylic diimide (BPE‐PTCDI). The effects of nanowire dimension and silane surface treatment on the memory characteristics are explored. The diameter of the nanowires is reduced by increasing the non‐solvent methanol composition, which led to the enhanced crystallinity and high field‐effect mobility. The BPE‐PTCDI nanowires with small diameters induce high electrical fields and result in a large memory window (the shifting of the threshold voltage, ΔVth). The ΔVth value of BPE‐PTCDI nanowire based ONVM device on the bare substrate can reach 51 V, which is significantly larger than that of thin film. The memory window is further enhanced to 78 V with the on/off ratio of 2.1 × 104 and the long retention time (104 s), using a hydrophobic surface (such as trichloro(phenyl)silane‐treated surface). The above results demonstrate that the n‐type semiconducting nanowires have potential applications in high performance non‐volatile transistor memory devices.  相似文献   

3.
The highly photosensitive characteristics of organic thin‐film transistors (OTFTs) made using soluble star‐shaped oligothiophenes with four‐armed π‐conjugation paths, 4(HPBT)‐benzene and 4(HP3T)‐benzene molecules having a relatively high quantum yield, are reported. 4(HPBT)‐benzene‐based organic phototransistors (OPTs) exhibited high photosensitivity (~2500–4300 A W?1) even with low optical powers (~6.8–30 µW cm?2) at zero gate bias. The measured photosensitivity of the devices was much higher than that of inorganic single‐crystal Si‐based phototransistors, as well as that of other OPTs reported earlier. With the highly photosensitive characteristics of the 4(HPBT)‐benzene‐based OPTs, a high ratio of the on and off current switching of ~4 × 104 with low optical power and low gate bias was observed. The slow relaxation of the photoinduced charges and charge‐trapping phenomena at the interface could lead to a reproducible memory operation for 4(HPBT)‐benzene‐based OPTs.  相似文献   

4.
Flexible near‐infrared (NIR) light‐sensing detectors are strongly required in the fast‐growing flexible electronics era, because they can serve as a vision system like eyes in various innovative applications including humanoid robots. Recently, keen interest has been paid to organic phototransistors due to their unique signal amplification and active matrix driving features over organic photodiodes. However, conventional NIR‐sensing organic phototransistors suffer from the limited use of organic materials because the channel layers play a dual role in both charge transport and sensing so that organic semiconducting materials with reasonably high charge mobility can be applied only. Here, it is demonstrated that a conjugated polymer, poly[{2,5‐bis‐(2‐ethylhexyl)‐3,6‐bis‐(thien‐2‐yl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐diyl}‐co‐{2,2′‐(2,1,3‐benzothiadiazole)]‐5,5′‐diyl}] (PEHTPPD‐BT), which exhibits no transistor performance as a channel layer, can stably detect a NIR light (up to 1000 nm) as a gate‐sensing layer (GSL) when it is placed between gate‐insulating layers and gate electrodes. The flexible array (10 × 10) detectors with the PEHTPPD‐BT GSLs could effectively sense NIR light without visible light interference by applying visible light cut films.  相似文献   

5.
High‐performance organic heterojunction phototransistors are fabricated using highly ordered copper phthalocyanine (CuPc) and para ‐sexiphenyl (p ‐6P) thin films. The p ‐6P thin film plays an important role on the performance of CuPc/p ‐6P heterojunction phototransistors. It acts as a molecular template layer to induce the growth of highly ordered CuPc thin film, which dramatically improves the charge transport and decreases the grain boundaries. On the other hand, the p ‐6P thin film can form an effective heterojunction with CuPc thin film, which is greatly helpful to enhance the light absorption and photogenerated carriers. Under 365 nm ultraviolet light irradiation, the ratio of photocurrent and dark current and photoresponsivity of CuPc/p ‐6P heterojunction phototransistors reaches to about 2.2 × 104 and 4.3 × 102 A W?1, respectively, which are much larger than that of CuPc phototransistors of about 2.7 × 102 and 7.3 A W?1, respectively. A detailed study carried out with current sensing atomic force microscopy proves that the photocurrent is predominately produced inside the highly ordered CuPc/p ‐6P heterojunction grains, while the photocurrent produced at the boundaries between grains can be neglected. The research provides a good method for fabricating high‐performance organic phototransistors using a combination of molecular template growth and organic heterojunction.  相似文献   

6.
Phototransistors are three‐terminal photodetectors which usually have higher photosensitivity than photodiodes due to the presence of gate electrode. In this report, organic phototransistors (OPTs) based on a donor material, namely, poly{2,5‐selenophene‐alt‐2,8‐(4,10‐bis(2‐hexyldecyl))thieno[2′,3′:5,6]­pyrido[3,4‐g]thieno[3,2‐c]isoquinoline‐5,11(4H,10H)‐dione} (PSeTPTI), are fabricated and intensively studied. As unipolar p‐type organic semiconductor usually has plenty of electron traps in the bulk to impede electron transporting, most of photogenerated electrons will fill the traps in PSeTPTI and this process can prolong the response time. By introducing [6,6]‐phenyl C61 butyric acid methyl ester on top, the p–n heterojunction can produce most of the photocurrent and eliminates the influence from the process of trapping electrons. This mechanism improves the photoresponsivity and response speed. Since ultraviolet (UV) detection is very important in some fields including military, aerospace, and biology, the OPTs are characterized under UV illumination besides the visible light and they present high sensitivity. Furthermore, organic semiconductors often have bad stability in harsh conditions and meanwhile some devices need to work in these environments. At high temperature even up to 200 °C, our OPTs can work normally and show very high stability, indicating the potential of the devices in applications of high‐temperature environments.  相似文献   

7.
有机光控晶体管因其低成本、易加工等特点而受到广泛的关注。通过溶剂氛围滴膜法制备了基于6,13-二氯并五苯的微纳米带。采用氯苯做溶剂时,得到了形貌规则、晶形良好的微纳米带,而采用邻二氯苯做溶剂时,获得了大面积有序、定向生长的微纳米带。随后构筑了基于上述微纳结构的单根和多根微纳米带有机光控晶体管,器件显示了高的光敏特性。在很低强度的入射光(1.55mW/cm2)照射下,其光敏系数达1 300,表明6,13-二氯并五苯在有机微纳光控晶体管方面具有很好的应用前景。  相似文献   

8.
Significant effort has been made to develop novel material systems to improve the efficiency of near‐infrared organic light‐emitting diodes (NIR OLEDs). Of those, fluorescent chromophores are mostly studied because of their advantages in cost and tunability. However, it is still rare for fluorescent NIR emitters to present good color purities in the NIR range and to have high external quantum efficiency (EQE). Here, a wedge‐shaped D‐π‐A‐π‐D emitter APDC‐DTPA with thermally activated delayed fluorescence property and a small single‐triplet splitting (ΔEst) of 0.14 eV is presented. The non‐doped NIR device exhibits excellent performance with a maximum EQE of 2.19% and a peak wavelength of 777 nm. Remarkably, when 10 wt% of APDC‐DTPA is doped in 1,3,5‐tris(1‐phenyl‐1H‐benzimidazol‐2‐yl)benzene host, an extremely high EQE of 10.19% with an emission peak of 693 nm is achieved. All these values represent the best result for NIR OLEDs based on a pure organic fluorescent emitter with similar device structure and color gamut.  相似文献   

9.
Printable and flexible organic phototransistors (OPTs) make comprehensive requirements for the organic semiconductors (OSCs), including high photosensitivity, decent transistor characteristics, appropriate solution viscosity, and good film flexibility. It has been challenging to obtain such semiconductors. Here, we demonstrated that by taking advantage of the interfacial charge effect, printable and flexible OPTs with high performance can be successfully fabricated through simply blending common OSCs with polymers. Using 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene and an insulating biopolymer polylactide, OPTs with blended and layered structure are both fabricated and investigated. The photoresponses of the OPTs can be modulated by gate voltage over 1000 times, and their responsivities are measured up to 400 A W?1. As compared to the layered OPTs, the blended ones exhibit higher photocurrent to dark current ratio (up to 105) and better light detection limit (lower than 0.02 mW cm?2). The improvements are attributed to larger interfacial area and more intensive charge trapping effect. The flexible OPTs are further fabricated by inkjet printing the blended solution. This work presents OPTs with comprehensive advantages including low cost, enhanced photosensitivity, great flexibility, and printability, which are realized by simply blending common OSC with polymer, and thus provide an inspiration for the design of novel organic electronics.  相似文献   

10.
Phosphorescent organic light‐emitting diodes (OLEDs) with ultimate efficiency in terms of the external quantum efficiency (EQE), driving voltage, and efficiency roll‐off are reported, making use of an exciplex‐forming co‐host. This exciplex‐forming co‐host system enables efficient singlet and triplet energy transfers from the host exciplex to the phosphorescent dopant because the singlet and triplet energies of the exciplex are almost identical. In addition, the system has low probability of direct trapping of charges at the dopant molecules and no charge‐injection barrier from the charge‐transport layers to the emitting layer. By combining all these factors, the OLEDs achieve a low turn‐on voltage of 2.4 V, a very high EQE of 29.1% and a very high power efficiency of 124 lm W?1. In addition, the OLEDs achieve an extremely low efficiency roll‐off. The EQE of the optimized OLED is maintained at more than 27.8%, up to 10 000 cd m?2.  相似文献   

11.
Organic redox‐active molecules are inborn electrodes to store large‐radius potassium (K) ion. High‐performance organic cathodes are important for practical usage of organic potassium‐ion batteries (OPIBs). However, small‐molecule organic cathodes face serious dissolution problems against liquid electrolytes. A novel insoluble small‐molecule organic cathode [N,N′‐bis(2‐anthraquinone)]‐perylene‐3,4,9,10‐tetracarboxydiimide (PTCDI‐DAQ, 200 mAh g?1) is initially designed for OPIBs. In half cells (1–3.8 V vs K+/K) using 1 m KPF6 in dimethoxyethane (DME), PTCDI‐DAQ delivers a highly stable specific capacity of 216 mAh g?1 and still holds the value of 133 mAh g?1 at an ultrahigh current density of 20 A g?1 (100 C). Using reduced potassium terephthalate (K4TP) as the organic anode, the resulting K4TP||PTCDI‐DAQ OPIBs with the electrolyte 1 m KPF6 in DME realize a high energy density of maximum 295 Wh kg?1cathode (213 mAh g?1cathode × 1.38 V) and power density of 13 800 W Kg?1cathode (94 mAh g?1 × 1.38 V @ 10 A g?1) during the working voltage of 0.2–3.2 V. Meanwhile, K4TP||PTCDI‐DAQ OPIBs fulfill the superlong lifespan with a stable discharge capacity of 62 mAh g?1cathode after 10 000 cycles and 40 mAh g?1cathode after 30 000 cycles (3 A g?1). The integrated performance of PTCDI‐DAQ can currently defeat any cathode reported in K‐ion half/full cells.  相似文献   

12.
High‐performance, blue, phosphorescent organic light‐emitting diodes (PhOLEDs) are achieved by orthogonal solution‐processing of small‐molecule electron‐transport material doped with an alkali metal salt, including cesium carbonate (Cs2CO3) or lithium carbonate (Li2CO3). Blue PhOLEDs with solution‐processed 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) electron‐transport layer (ETL) doped with Cs2CO3 show a luminous efficiency (LE) of 35.1 cd A?1 with an external quantum efficiency (EQE) of 17.9%, which are two‐fold higher efficiency than a BPhen ETL without a dopant. These solution‐processed blue PhOLEDs are much superior compared to devices with vacuum‐deposited BPhen ETL/alkali metal salt cathode interfacial layer. Blue PhOLEDs with solution‐processed 1,3,5‐tris(m‐pyrid‐3‐yl‐phenyl)benzene (TmPyPB) ETL doped with Cs2CO3 have a luminous efficiency of 37.7 cd A?1 with an EQE of 19.0%, which is the best performance observed to date in all‐solution‐processed blue PhOLEDs. The results show that a small‐molecule ETL doped with alkali metal salt can be realized by solution‐processing to enhance overall device performance. The solution‐processed metal salt‐doped ETLs exhibit a unique rough surface morphology that facilitates enhanced charge‐injection and transport in the devices. These results demonstrate that orthogonal solution‐processing of metal salt‐doped electron‐transport materials is a promising strategy for applications in various solution‐processed multilayered organic electronic devices.  相似文献   

13.
Previous investigations of the field‐effect mobility in poly(3‐hexylthiophene) (P3HT) layers revealed a strong dependence on molecular weight (MW), which was shown to be closely related to layer morphology. Here, charge carrier mobilities of two P3HT MW fractions (medium‐MW: Mn = 7 200 g mol?1; high‐MW: Mn = 27 000 g mol?1) are probed as a function of temperature at a local and a macroscopic length scale, using pulse‐radiolysis time‐resolved microwave conductivity (PR‐TRMC) and organic field‐effect transistor measurements, respectively. In contrast to the macroscopic transport properties, the local intra‐grain mobility depends only weakly on MW (being in the order of 10?2 cm2 V?1 s?1) and being thermally activated below the melting temperature for both fractions. The striking differences of charge transport at both length scales are related to the heterogeneity of the layer morphology. The quantitative analysis of temperature‐dependent UV/Vis absorption spectra according to a model of F. C. Spano reveals that a substantial amount of disordered material is present in these P3HT layers. Moreover, the analysis predicts that aggregates in medium‐MW P3HT undergo a “pre‐melting” significantly below the actual melting temperature. The results suggest that macroscopic charge transport in samples of short‐chain P3HT is strongly inhibited by the presence of disordered domains, while in high‐MW P3HT the low‐mobility disordered zones are bridged via inter‐crystalline molecular connections.  相似文献   

14.
Fluorescent emitters have regained intensive attention in organic light emitting diode (OLED) community owing to the breakthrough of the device efficiency and/or new emitting mechanism. This provides a good chance to develop new near‐infrared (NIR) fluorescent emitter and high‐efficiency device. In this work, a D‐π‐A‐π‐D type compound with naphthothiadiazole as acceptor, namely, 4,4′‐(naphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diyl)bis(N,N ‐diphenylaniline) (NZ2TPA), is designed and synthesized. The photophysical study and density functional theory analysis reveal that the emission of the compound has obvious hybridized local and charge‐transfer (HLCT) state feature. In addition, the compound shows aggregation‐induced emission (AIE) characteristic. Attributed to its HLCT mechanism and AIE characteristic, NZ2TPA acquires an unprecedentedly high photoluminescent quantum yield of 60% in the neat film, which is the highest among the reported organic small‐molecule NIR emitters and even exceeds most phosphorescent NIR materials. The nondoped devices based on NZ2TPA exhibit excellent performance, achieving a maximum external quantum efficiency (EQE) of 3.9% with the emission peak at 696 nm and a high luminance of 6330 cd m?2, which are among the highest in the reported nondoped NIR fluorescent OLEDs. Moreover, the device remains a high EQE of 2.8% at high brightness of 1000 cd m?2, with very low efficiency roll‐off.  相似文献   

15.
The short‐wavelength response of cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaic (PV) modules can be improved by the application of a luminescent down‐shifting (LDS) layer to the PV module. The LDS layer contains a mixture of fluorescent organic dyes that are able to absorb short‐wavelength light of λ < 540 nm, for which the PV module exhibited low external quantum efficiency (EQE), and re‐emit it at a longer wavelength (λ > 540 nm), where the solar cell EQE is high. Ray‐tracing simulations indicate that a mixed LDS layer containing three dyes could lead to an increase in the short‐circuit current density from Jsc = 19.8 mA/cm2 to Jsc = 22.9 mA/cm2 for a CdS/CdTe PV module. This corresponds to an increase in conversion efficiency from 9.6% to 11.2%. This indicates that a relative increase in the performance of a production CdS/CdTe PV module of nearly 17% can be expected via the application of LDS layers, possibly without any making any alterations to the solar cell itself. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Charge transport is investigated in high‐mobility n‐channel organic field‐effect transistors (OFETs) based on poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2), Polyera ActivInk? N2200) with variable‐temperature electrical measurements and charge‐modulation spectroscopy. Results indicate an unusually uniform energetic landscape of sites for charge‐carrier transport along the channel of the transistor as the main reason for the observed high‐electron mobility. Consistent with a lateral field‐independent transport at temperatures down to 10 K, the reorganization energy is proposed to play an important role in determining the activation energy for the mobility. Quantum chemical calculations, which show an efficient electronic coupling between adjacent units and a reorganization energy of a few hundred meV, are consistent with these findings.  相似文献   

17.
In order to fabricate polymer field‐effect transistors (PFETs) with high electrical stability under bias‐stress, it is crucial to minimize the density of charge trapping sites caused by the disordered regions. Here we report PFETs with excellent electrical stability comparable to that of single‐crystalline organic semiconductors by specifically controlling the molecular weight (MW) of the donor‐acceptor type copolymer semiconductors, poly (didodecylquaterthiophene‐alt‐didodecylbithiazole). We found that MW‐induced thermally structural transition from liquid‐crystalline to semi‐crystalline phases strongly affects the device performance (charge‐carrier mobility and electrical bias‐stability) as well as the nanostructures such as the molecular ordering and the morphological feature. In particular, for the polymer with a MW of 22 kDa, the transfer curves varied little (ΔVth = 3~4 V) during a period of prolonged bias stress (about 50 000 s) under ambient conditions. This enhancement of the electrical bias‐stability can be attributed to highly ordered liquid‐crystalline nanostructure of copolymer semiconductors on dielectric surface via the optimization of molecular weights.  相似文献   

18.
By introducing a neat Pt(II)‐based phosphor with a remarkably short decay lifetime, a simplified doping‐free phosphorescent organic light‐emitting diode (OLED) with a forward viewing external quantum efficiency (EQE) and power efficiency of 20.3 ± 0.5% and 63.0 ± 0.4 lm W?1, respectively, is demonstrated. A quantitative analysis of how triplet‐triplet annihilation (TTA) and triplet‐polaron annihilation (TPA) affect the device EQE roll‐off at high current densities is performed. The contributions from loss of charge balance associated with charge leakage and field‐induced exciton dissociation are found negligible. The rate constants kTTA and kTPA are determined by time‐resolved photoluminescence experiments of a thin film and an electrically‐driven unipolar device, respectively. Using the parameters extracted experimentally, the EQE is modeled versus electric current characteristics of the OLEDs by taking both TTA and TPA into account. Based on this model, the impacts of the emitter lifetime, quenching rate constants, and exciton formation zone upon device efficiency are analyzed. It is found that the short lifetime of the neat emitter is key for the reduction of triplet quenching.  相似文献   

19.
Two novel naphtho[1,2‐d]imidazole derivatives are developed as deep‐blue, light‐emitting materials for organic light‐emitting diodes (OLEDs). The 1H‐naphtho[1,2‐d]imidazole based compounds exhibit a significantly superior performance than the 3H‐naphtho[1,2‐d]imidazole analogues in the single‐layer devices. This is because they have a much higher capacity for direct electron‐injection from the cathode compared to their isomeric counterparts resulting in a ground‐breaking EQE (external quantum efficiency) of 4.37% and a low turn‐on voltage of 2.7 V, and this is hitherto the best performance for a non‐doped single‐layer fluorescent OLED. Multi‐layer devices consisting of both hole‐ and electron‐transporting layers, result in identically excellent performances with EQE values of 4.12–6.08% and deep‐blue light emission (Commission Internationale de l'Eclairage (CIE) y values of 0.077–0.115) is obtained for both isomers due to the improved carrier injection and confinement within the emissive layer. In addition, they showed a significantly better blue‐color purity than analogous molecules based on benzimidazole or phenanthro[9,10‐d]imidazole segments.  相似文献   

20.
Two host materials of {4‐[diphenyl(4‐pyridin‐3‐ylphenyl)silyl]phenyl}diphenylamine (p‐PySiTPA) and {4‐[[4‐(diphenylphosphoryl)phenyl](diphenyl)silyl]phenyl}diphenylamine (p‐POSiTPA), and an electron‐transporting material of [(diphenylsilanediyl)bis(4,1‐phenylene)]bis(diphenylphosphine) dioxide (SiDPO) are developed by incorporating appropriate charge transporting units into the tetraarylsilane skeleton. The host materials feature both high triplet energies (ca. 2.93 eV) and ambipolar charge transporting nature; the electron‐transporting material comprising diphenylphosphine oxide units and tetraphenylsilane skeleton exhibits a high triplet energy (3.21 eV) and a deep highest occupied molecular orbital (HOMO) level (‐6.47 eV). Using these tetraarylsilane‐based functional materials results in a high‐efficiency blue phosphorescent device with a three‐organic‐layer structure of 1,1‐bis[4‐[N,N‐di(p‐tolyl)‐amino]phenyl]cyclohexane (TAPC)/p‐POSiTPA: iridium(III) bis(4′,6′‐difluorophenylpyridinato)tetrakis(1‐pyrazolyl)borate (FIr6)/SiDPO that exhibits a forward‐viewing maximum external quantum efficiency (EQE) up to 22.2%. This is the first report of three‐organic‐layer FIr6‐based blue PhOLEDs with the forward‐viewing EQE over 20%, and the device performance is among the highest for FIr6‐based blue PhOLEDs even compared with the four or more than four organic‐layer devices. Furthermore, with the introduction of bis(2‐(9,9‐diethyl‐9H‐fluoren‐2‐yl)‐1‐phenyl‐1H‐benzoimidazol‐N,C3)iridium acetylacetonate [(fbi)2Ir(acac)] as an orange emitter, an all‐phosphor warm‐white PhOLED achieves a peak power efficiency of 47.2 lm W?1, which is close to the highest values ever reported for two‐color white PhOLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号