首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photonic elastomers (PEs) that can tune their colors through adjusting the lattice spacing of incorporated colloidal particles during mechanical deformation have shown great promise in visualized strain/stress sensors. However, the unsatisfactory structural color and narrow‐spectrum responsiveness limit their broad applications. Herein, carbon‐coated Fe3O4 nanoparticles (Fe3O4@C NPs) with a high refractive index (RI) and broad light absorption are employed for the construction of PEs with brilliant colors and broad‐spectrum responsiveness by incorporating the Fe3O4@C NPs into amino‐terminated poly(dimethylsiloxane) (amino‐PDMS) polymer through supramolecular interactions. The inherent light‐absorbing property, high RI, and supramolecular‐induced short‐range ordered arrangement of Fe3O4@C NPs imparts the PEs with brilliant and angle‐independent structural color. By optimizing the content of Fe3O4@C NPs in the PEs, broad‐spectrum responsiveness (stopband shifting ≈223 nm) and excellent recovery properties under a large strain can be achieved. The dynamic and reversible interaction endows the PEs with a healable capability. More interestingly, the incorporated Fe3O4@C NPs with photothermal capability can effectively absorb light and convert it into heat under light irradiation (solar light or near‐infrared laser), accelerating healing of the damaged PEs. This study provides a new strategy for bioinspired construction of PEs for applications in the fields of sensing, colorful coating, and display.  相似文献   

2.
The lack of precise control of particle sizes is the critical challenge in the assembly of 3D interconnected transition‐metal oxide (TMO) for newly‐emerging energy conversion devices. A self‐embedded templating strategy for preparing the TMO@carbon quasiaerogels (TMO@C‐QAs) is proposed. By mimicking an aerogel structure at a microscale, the TMO@C‐QA successfully assembles size‐controllable TMO nanoparticles into 3D interconnected structure with surface‐enriched carbon species. The morphological evolutions of intermediates verify that the self‐embedded Ostwald ripening templating approach is responsible for the dual‐channel TMO@C‐QA formation. The general self‐embedded templating strategy is easily extended to prepare various TMO@C‐QAs, including the Co3O4@C‐QA, Mn3O4@C‐QA, Fe2O3@C‐QA, and NiO@C‐QA. Benefiting from the unparalleled 3D interconnected network of aerogels, the Co3O4@C‐QA displays superior bifunctional catalytic activities for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), as well as high specific capacity and excellent long‐term stability for lithium‐ion battery (LIB) anode. A proof‐of‐concept battery‐powered electrolyzer with Co3O4@C‐QA cathode and anode powered by a full LIB with Co3O4@C‐QA anode is presented. The battery‐powered electrolyzer made of the state‐of‐the‐art TMOs can exhibit great competitive advantages due to its supreme multifunctional energy conversion performance for future water electrolysis.  相似文献   

3.
Developing a feasible way to prepare highly dispersed heterometallic nanoparticles incorporated in porous carbon composites is of significant importance for multifunctional materials. In this work, heterometallic γ‐Fe2O3 and GdPO4 nanoparticles that are incorporated in ordered mesoporous carbon composites are facilely prepared by a one‐pot in situ method using a Wells–Dawson‐like cluster of [Fe6Gd63‐O)2(CO3)(O3PPh)6(O2C t Bu)18] ({Fe6Gd6P6} for short) as the precursor. It is verified that the γ‐Fe2O3 and GdPO4 nanoparticles are highly dispersed and embedded into the carbon matrix with a particle size smaller than 5 nm, even when the carbon matrix is changed from 2D hexagonal P6mm to 3D body‐centered cubic Im‐3m symmetry. Additionally, a formation mechanism is proposed. Furthermore, dual‐mode magnetic resonance (MR) imaging and drug carrier properties are evaluated by in vitro experiments, which show a satisfactory T 1‐ and T 2‐weighted MR imaging effect with r 1 and r 2 relaxivity values of 2.7 and 183.7 mM?1 s?1, respectively, and doxorubicin hydrochloride carrier amount of 102 mg g?1, identifying a combined function for potential diagnostic and therapy.  相似文献   

4.
Naked magnetically recyclable mesoporous Au–γ‐Fe2O3 clusters, combining the inherent magnetic properties of γ‐Fe2O3 and the high catalytic activity of Au nanoparticles (NPs), are successfully synthesized. Hydrophobic Au–Fe3O4 dimers are first self‐assembled to form sub‐micrometer‐sized Au–Fe3O4 clusters. The Au–Fe3O4 clusters are then coated with silica, calcined at 550 °C, and finally alkali treated to dissolve the silica shell, yielding naked‐Au–γ‐Fe2O3 clusters containing Au NPs of size 5–8 nm. The silica protection strategy serves to preserve the mesoporous structure of the clusters, inhibit the phase transformation from γ‐Fe2O3 to α‐Fe2O3, and prevent cluster aggregation during the synthesis. For the reduction of p‐nitrophenol by NaBH4, the activity of the naked‐Au–γ‐Fe2O3 clusters is ≈22 times higher than that of self‐assembled Au–Fe3O4 clusters. Moreover, the naked‐Au–γ‐Fe2O3 clusters display vastly superior activity for CO oxidation compared with carbon‐supported Au–γ‐Fe2O3 dimers, due to the intimate interfacial contact between Au and γ‐Fe2O3 in the clusters. Following reaction, the naked‐Au–γ‐Fe2O3 clusters can easily be recovered magnetically and reused in different applications, adding to their versatility. Results suggest that naked‐Au–γ‐Fe2O3 clusters are a very promising catalytic platform affording high activity. The strategy developed here can easily be adapted to other metal NP–iron oxide systems.  相似文献   

5.
Robust composite structures consisting of Fe3O4 nanoparticles (~5 nm) embedded in mesoporous carbon spheres with an average size of about 70 nm (IONP@mC) are synthesized by a facile two‐step method: uniform Fe3O4 nanoparticles are first synthesized followed by a post‐synthetic low‐temperature hydrothermal step to encapsulate them in mesoporous carbon spheres. Instead of graphene which has been extensively reported for use in high‐rate battery applications as a carbonaceous material combined with metal oxides mesoporous carbon is chosen to enhance the overall performances. The interconnecting pores facilitate the penetration of electrolyte leading to direct contact between electrochemically active Fe3O4 and lithium ion‐carrying electrolyte greatly facilitating lithium ion transportation. The interconnecting carbon framework provides continuous 3D electron transportation routes. The anodes fabricated from IONP@mC are cycled under high current densities ranging from 500 to 10 000 mA g?1. A high reversible capacity of 271 mAh g?1 is reached at 10 000 mAh g?1 demonstrating its superior high rate performance.  相似文献   

6.
Fe3O4 nanocrystals confined in mesocellular carbon foam (MSU‐F‐C) are synthesized by a “ host–guest ” approach and tested as an anode material for lithium‐ion batteries (LIBs). Briefly, an iron oxide precursor, Fe(NO3)3·9H2O, is impregnated in MSU‐F‐C having uniform cellular pores ~30 nm in dia­meter, followed by heat‐treatment at 400 °C for 4 h under Ar. Magnetite Fe3O4 nanocrystals with sizes between 13–27 nm are then successfully fabricated inside the pores of the MSU‐F‐C, as confirmed by transmission electron microscopy (TEM), dark‐field scanning transmission electron microscopy (STEM), energy dispersive X‐ray spectroscopy (EDS), X‐ray diffraction (XRD), and nitrogen sorption isotherms. The presence of the carbon most likely allows for reduction of some of the Fe3+ ions to Fe2+ ions via a carbothermoreduction process. A Fe3O4/MSU‐F‐C nanocomposite with 45 wt% Fe3O4 exhibited a first charge capacity of 1007 mA h g?1 (Li+ extraction) at 0.1 A g?1 (~0.1 C rate) with 111% capacity retention at the 150th cycle, and retained 37% capacity at 7 A g?1 (~7 C rate). Because the three dimensionally interconnected open pores are larger than the average nanosized Fe3O4 particles, the large volume expansion of Fe3O4 upon Li‐insertion is easily accommodated inside the pores, resulting in excellent electrochemical performance as a LIB anode. Furthermore, when an ultrathin Al2O3 layer (<4 Å) was deposited on the composite anode using atomic layer deposition (ALD), the durability, rate capability and undesirable side reactions are significantly improved.  相似文献   

7.
The synthesis (by a facile two‐step sol–gel process), characterization, and application in controlled drug release is reported for monodisperse core–shell‐structured Fe3O4@nSiO2@mSiO2@NaYF4: Yb3+, Er3+/Tm3+ nanocomposites with mesoporous, up‐conversion luminescent, and magnetic properties. The nanocomposites show typical ordered mesoporous characteristics and a monodisperse spherical morphology with narrow size distribution (around 80 nm). In addition, they exhibit high magnetization (38.0 emu g?1, thus it is possible for drug targeting under a foreign magnetic field) and unique up‐conversion emission (green for Yb3+/Er3+ and blue for Yb3+/Tm3+) under 980 nm laser excitation even after loading with drug molecules. Drug release tests suggest that the multifunctional nanocomposites have a controlled drug release property. Interestingly, the up‐conversion emission intensity of the multifunctional carrier increases with the released amount of model drug, thus allowing the release process to be monitored and tracked by the change of photoluminescence intensity. This composite can act as a multifunctional drug carrier system, which can realize the targeting and monitoring of drugs simultaneously.  相似文献   

8.
We report the synthesis of a novel branched nano‐heterostructure composed of SnO2 nanowire stem and α‐Fe2O3 nanorod branches by combining a vapour transport deposition and a facile hydrothermal method. The epitaxial relationship between the branch and stem is investigated by high resolution transmission electron microscopy (HRTEM). The SnO2 nanowire is determined to grow along the [101] direction, enclosed by four side surfaces. The results indicate that distinct crystallographic planes of SnO2 stem can induce different preferential growth directions of secondary nanorod branches, leading to six‐fold symmetry rather than four‐fold symmetry. Moreover, as a proof‐of‐concept demonstration of the function, such α‐Fe2O3/SnO2 composite material is used as a lithium‐ion batteries (LIBs) anode material. Low initial irreversible loss and high reversible capacity are demonstrated, in comparison to both single components. The synergetic effect exerted by SnO2 and α‐Fe2O3 as well as the unique branched structure are probably responsible for the enhanced performance.  相似文献   

9.
Chemotherapy resistance and bone defects caused by surgical excision of osteosarcoma have been formidable challenges for clinical treatment. Although recently developed nanocatalysts based on Fenton‐like reactions for catalytic therapy demonstrate high potential to eliminate chemotherapeutic‐insensitive tumors, insufficient concentration of intrinsic hydrogen peroxide (H2O2) and low intratumoral penetrability hinder their applications and therapeutic efficiency. The synchronous enriching intratumor H2O2 amount or nanoagents and promoting osteogenesis are intriguing strategies to solve the dilemma in osteosarcoma therapy. Herein, a multifunctional “all‐in‐one” biomaterial platform is constructed by co‐loading calcium peroxide (CaO2) and iron oxide (Fe3O4) nanoparticles into a three‐dimensional (3D) printing akermanite scaffold (AKT‐Fe3O4‐CaO2). The loaded CaO2 nanoparticles act as H2O2 sources to achieve H2O2 self‐sufficient nanocatalytic osteosarcoma therapy as catalyzed by coloaded Fe3O4 nanoagents, as well as provide calcium ion (Ca2+) pools to enhance bone regeneration. The synergistic osteosarcoma‐therapeutic effect is achieved from both magnetic hyperthermia as‐enabled by Fe3O4 nanoparticles under alternative magnetic fields and hyperthermia‐enhanced Fenton‐like nanocatalytic reaction for producing highly toxic hydroxyl radicals. Importantly, the constructed 3D AKT‐Fe3O4‐CaO2 composite scaffolds are featured with favorable bone‐regeneration activity, providing a worthy base and positive enlightenment for future osteosarcoma treatment with bone defects by the multifunctional biomaterial platforms.  相似文献   

10.
A general method to synthesize mesoporous metal oxide@N‐doped macroporous graphene composite by heat‐treatment of electrostatically co‐assembled amine‐functionalized mesoporous silica/metal oxide composite and graphene oxide, and subsequent silica removal to produce mesoporous metal oxide and N‐doped macroporous graphene simultaneously is reported. Four mesoporous metal oxides (WO3? x , Co3O4, Mn2O3, and Fe3O4) are encapsulated in N‐doped macroporous graphene. Used as an anode material for sodium‐ion hybrid supercapacitors (Na‐HSCs), mesoporous reduced tungsten oxide@N‐doped macroporous graphene (m‐WO3? x @NM‐rGO) gives outstanding rate capability and stable cycle life. Ex situ analyses suggest that the electrochemical reaction mechanism of m‐WO3? x @NM‐rGO is based on Na+ intercalation/de‐intercalation. To the best of knowledge, this is the first report on Na+ intercalation/de‐intercalation properties of WO3? x and its application to Na‐HSCs.  相似文献   

11.
In this study, an amorphous Li2CO3‐coated nanocrystalline α‐Fe2O3 hierarchical structure is synthesized for the first time using a facile one‐step mechanochemical process at room temperature, taking advantage of the concurrence of repeated fracture‐cold welding of material's particles and a gas‐solid redox reaction. The conformal coating and hierarchical structure significantly increase the cycling durability and rate capability. Typically, a 1–3 nm thick amorphous Li2CO3 layer is conformally coated on Fe2O3 nanocrystallines (≈10 nm in size) that form hierarchically aggregated particles 400–800 nm in size by ball milling α‐Fe2O3 with LiH in CO2. The prepared Li2CO3‐coated nanocrystalline α‐Fe2O3 exhibits highly stable long‐term cyclability as it delivers a reversible capacity of 975 mAh g?1 with 99% of retention after 400 cycles at 100 mA g?1. At a high rate of 3000 mA g?1, its reversible capacity still remains at 537 mAh g?1, superior to the uncoated counterpart (311 mAh g?1). Moreover, amorphous Li2O and Li2CO3 coatings are also similarly produced on Fe2O3 and NiO nanocrystallines, respectively, representing the general applicability of this mechanochemical approach.  相似文献   

12.
Rational design of non‐noble metal catalysts with robust and durable electrocatalytic activity for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is extremely important for renewable energy conversion and storage, regenerative fuel cells, rechargeable metal–air batteries, water splitting etc. In this work, a unique hybrid material consisting of Fe3C and Co nanoparticles encapsulated in a nanoporous hierarchical structure of N‐doped carbon (Fe3C‐Co/NC) is fabricated for the first time via a facile template‐removal method. Such an ingenious structure shows great features: the marriage of 1D carbon nanotubes and 2D carbon nanosheets, abundant active sites resulting from various active species of Fe3C, Co, and NC, mesoporous carbon structure, and intimate integration among Fe3C, Co, and NC. As a multifunctional electrocatalyst, the Fe3C‐Co/NC hybrid exhibits excellent performance for ORR, OER, and HER, outperforming most of reported triple functional electrocatalysts. This study provides a new perspective to construct multifunctional catalysts with well‐designed structure and superior performance for clean energy conversion technologies.  相似文献   

13.
In the work, a facile yet efficient self‐sacrifice strategy is smartly developed to scalably fabricate hierarchical mesoporous bi‐component‐active ZnO/ZnFe2O4 (ZZFO) sub‐microcubes (SMCs) by calcination of single‐resource Prussian blue analogue of Zn3[Fe(CN)6]2 cubes. The hybrid ZZFO SCMs are homogeneously constructed from well‐dispersed nanocrstalline ZnO and ZnFe2O4 (ZFO) subunites at the nanoscale. After selectively etching of ZnO nanodomains from the hybrid, porously assembled ZFO SMCs with integrate architecture are obtained accordingly. When evaluated as anodes for LIBs, both hybrid ZZFO and ZFO samples exhibit appealing electrochemical performance. However, the as‐synthesized ZZFO SMCs demonstrate even better electrochemical Li‐storage performance, including even larger initial discharge capacity and reversible capacity, higher rate behavior and better cycling performance, particularly at high rates, compared with the single ZFO, which should be attributed to its unique microstructure characteristics and striking synergistic effect between the bi‐component‐active, well‐dispersed ZnO and ZFO nanophases. Of great significance, light is shed upon the insights into the correlation between the electrochemical Li‐storage property and the structure/component of the hybrid ZZFO SMCs, thus, it is strongly envisioned that the elegant design concept of the hybrid holds great promise for the efficient synthesis of advanced yet low‐cost anodes for next‐generation rechargeable Li‐ion batteries.  相似文献   

14.
Hollow structures are often used to relieve the intrinsic strain on metal oxide electrodes in alkali‐ion batteries. Nevertheless, one common drawback is that the large interior space leads to low volumetric energy density and inferior electric conductivity. Here, the von Mises stress distribution on a mesoporous hollow bowl (HB) is simulated via the finite element method, and the vital role of the porous HB structure on strain‐relaxation behavior is confirmed. Then, N‐doped‐C coated mesoporous α‐Fe2O3 HBs are designed and synthesized using a multistep soft/hard‐templating strategy. The material has several advantages: (i) there is space to accommodate strains without sacrificing volumetric energy density, unlike with hollow spheres; (ii) the mesoporous hollow structure shortens ion diffusion lengths and allows for high‐rate induced lithiation reactivation; and (iii) the N‐doped carbon nanolayer can enhance conductivity. As an anode in lithium‐ion batteries, the material exhibits a very high reversible capacity of 1452 mAh g?1 at 0.1 A g?1, excellent cycling stability of 1600 cycles (964 mAh g?1 at 2 A g?1), and outstanding rate performance (609 mAh g?1 at 8 A g?1). Notably, the volumetric specific capacity of composite electrode is 42% greater than that of hollow spheres. When used in potassium‐ion batteries, the material also shows high capacity and cycle stability.  相似文献   

15.
Developing low‐cost non‐precious metal catalysts for high‐performance oxygen reduction reaction (ORR) is highly desirable. Here a facile, in situ template synthesis of a MnO‐containing mesoporous nitrogen‐doped carbon (m‐N‐C) nanocomposite and its high electrocatalytic activity for a four‐electron ORR in alkaline solution are reported. The synthesis of the MnO‐m‐N‐C nanocomposite involves one‐pot hydrothermal synthesis of Mn3O4@polyaniline core/shell nanoparticles from a mixture containing aniline, Mn(NO3)2, and KMnO4, followed by heat treatment to produce N‐doped ultrathin graphitic carbon coated MnO hybrids and partial acid leaching of MnO. The as‐prepared MnO‐m‐N‐C composite catalyst exhibits high electrocatalytic activity and dominant four‐electron oxygen reduction pathway in 0.1 M KOH aqueous solution due to the synergetic effect between MnO and m‐N‐C. The pristine MnO shows little electrocatalytic activity and m‐N‐C alone exhibits a dominant two‐electron process for ORR. The MnO‐m‐N‐C composite catalyst also exhibits superior stability and methanol tolerance to a commercial Pt/C catalyst, making the composite a promising cathode catalyst for alkaline methanol fuel cell applications. The synergetic effect between MnO and N‐doped carbon described provides a new route to design advanced catalysts for energy conversion.  相似文献   

16.
A novel kind of rattle‐type hollow magnetic mesoporous sphere (HMMS) with Fe3O4 particles encapsulated in the cores of mesoporous silica microspheres has been successfully fabricated by sol–gel reactions on hematite particles followed by cavity generation with hydrothermal treatment and H2 reduction. Such a structure has the merits of both enhanced drug‐loading capacity and a significant magnetization strength. The prepared HMMSs realize a relatively high storage capacity up to 302 mg g?1 when ibuprofen is used as a model drug, and the IBU–HMMS system has a sustained‐release property, which follows a Fick's law.  相似文献   

17.
Carbon‐coated Fe3O4 nanospindles are synthesized by partial reduction of monodispersed hematite nanospindles with carbon coatings, and investigated with scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, and electrochemical experiments. The Fe3O4? C nanospindles show high reversible capacity (~745 mA h g?1 at C/5 and ~600 mA h g?1 at C/2), high coulombic efficiency in the first cycle, as well as significantly enhanced cycling performance and high rate capability compared with bare hematite spindles and commercial magnetite particles. The improvements can be attributed to the uniform and continuous carbon coating layers, which have several functions, including: i) maintaining the integrity of particles, ii) increasing the electronic conductivity of electrodes leading to the formation of uniform and thin solid electrolyte interphase (SEI) films on the surface, and iii) stabilizing the as‐formed SEI films. The results give clear evidence of the utility of carbon coatings to improve the electrochemical performance of nanostructured transition metal oxides as superior anode materials for lithium‐ion batteries.  相似文献   

18.
Sodium‐ion hybrid supercapacitors (Na‐HSCs) have potential for mid‐ to large‐scale energy storage applications because of their high energy/power densities, long cycle life, and the low cost of sodium. However, one of the obstacles to developing Na‐HSCs is the imbalance of kinetics from different charge storage mechanisms between the sluggish faradaic anode and the rapid non‐faradaic capacitive cathode. Thus, to develop high‐power Na‐HSC anode materials, this paper presents the facile synthesis of nanocomposites comprising Nb2O5@Carbon core–shell nanoparticles (Nb2O5@C NPs) and reduced graphene oxide (rGO), and an analysis of their electrochemical performance with respect to various weight ratios of Nb2O5@C NPs to rGO (e.g., Nb2O5@C, Nb2O5@C/rGO‐70, ‐50, and ‐30). In a Na half‐cell configuration, the Nb2O5@C/rGO‐50 shows highly reversible capacity of ≈285 mA h g?1 at 0.025 A g?1 in the potential range of 0.01–3.0 V (vs Na/Na+). In addition, the Na‐HSC using the Nb2O5@C/rGO‐50 anode and activated carbon (MSP‐20) cathode delivers high energy/power densities (≈76 W h kg?1 and ≈20 800 W kg?1) with a stable cycle life in the potential range of 1.0–4.3 V. The energy and power densities of the Na‐HSC developed in this study are higher than those of similar Li‐ and Na‐HSCs previously reported.  相似文献   

19.
An ordered mesoporous tungsten‐oxide/carbon (denoted as m‐WO3?x‐C‐s) nanocomposite is synthesized using a simple one‐pot method using polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as a structure‐directing agent. The hydrophilic PEO block interacts with the carbon and tungsten precursors (resol polymer and WCl6), and the PS block is converted to pores after heating at 700 °C under a nitrogen flow. The m‐WO3?x‐C‐s nanocomposite has a high Brunauer–Emmett–Teller (BET) surface area and hexagonally ordered pores. Because of its mesoporous structure and high intrinsic density of tungsten oxide, this material exhibits a high average volumetric capacitance and gravimetric capacitance as a pseudocapacitor electrode. In comparison with reduced mesoporous tungsten oxide (denoted as m‐WO3?x‐h), which is synthesized by a tedious hard template approach and further reduction in a H2/N2 atmosphere, m‐WO3?x‐C‐s shows a high capacitance and enhanced rate performance, as confirmed by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. The good performance of m‐WO3?x‐C‐s is attributed to the high surface area arising from the mesoporous structure, the large interconnected mesopores, and the low internal resistance from the well‐dispersed reduced tungsten oxide and amorphous carbon composite structure. Here, the amorphous carbon acts as an electrical pathway for effective pseudocapacitor behavior of WO3‐x.  相似文献   

20.
Multifunctional Ti4O7 particles with interconnected‐pore structure are designed and synthesized using porous poly(styrene‐b ‐2‐vinylpyridine) particles as a template. The particles can work efficiently as a sulfur‐host material for lithium–sulfur batteries. Specifically, the well‐defined porous Ti4O7 particles exhibit interconnected pores in the interior and have a high‐surface area of 592 m2 g?1; this shows the advantage of mesopores for encapsulating of sulfur and provides a polar surface for chemical binding with polysulfides to suppress their dissolution. Moreover, in order to improve the conductivity of the electrode, a thin layer of carbon is coated on the Ti4O7 surface without destroying its porous structure. The porous Ti4O7 and carbon‐coated Ti4O7 particles show significantly improved electrochemical performances as cathode materials for Li–S batteries as compared with those of TiO2 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号