首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
In this paper, we mainly study the preparation of an optical biosensor based on porous silicon (PSi) Bragg mirror and its feasibility for biological detection. The quantum dot (QD) labeled biotin was pipetted onto streptavidin functionalized PSi Bragg mirror samples, the affinity reaction between QD labeled biotin and streptavidin in PSi occurred, so the QDs were indirectly connected to the PSi. The fluorescence of QD enhanced the signal of biological reactions in PSi. The performance of the sensor is verified by detecting the fluorescence of the QD in PSi. Due to the fluorescence intensity of the QDs can be enhanced by PSi Bragg mirror, the sensitivity of the PSi optical biosensor will be improved.  相似文献   

2.
Nanostructured porous silicon (PSi) is a promising material for the label‐free detection of biomolecules, but it currently suffers from limited applicability due to poor sensitivity, typically in micromolar range. This work presents the design, operation concept, and characterization of a novel microfluidic device and assay that integrates an oxidized PSi optical biosensor with electrokinetic focusing for a highly sensitive label‐free detection of nucleic acids. Under proper oxidation conditions, the delicate nanostructure of PSi can be preserved, while providing sufficient dielectric insulation for application of high voltages. This enables the use of signal enhancement techniques, which are based on electric fields. Here, the DNA target molecules are focused using an electric field within a finite and confined zone, and this highly concentrated analyte is delivered to an on‐chip PSi Fabry–Pérot optical transducer, prefunctionalized with capture probes. Using reflective interferometric Fourier transform spectroscopy real‐time monitoring, a 1000‐fold improvement in limit of detection is demonstrated compared to a standard assay, using the same biosensor. Thus, a measured limit of detection of 1 × 10?9 m is achieved without compromising specificity. The concepts presented herein can be readily applied to other ionic targets, paving way for the development of other highly sensitive chemical and biochemical assays.  相似文献   

3.
The incorporation of a chemo‐responsive hydrogel into a 1D photonic porous silicon (PSi) transducer is demonstrated. A versatile hydrogel backbone is designed via the synthesis of an amine‐functionalized polyacrylamide copolymer where further amine‐specific biochemical reactions can enable control of cross‐links between copolymer chains based on complementary target–probe systems. As an initial demonstration, the incorporation of disulfide chemistry to control cross‐linking of this hydrogel system within a PSi Bragg mirror sensor is reported. Direct optical monitoring of a characteristic peak in the white light reflectivity spectrum of the incorporated PSi Bragg mirror facilitates real‐time detection of the hydrogel dissolution in response to the target analyte (reducing agent) over a timescale of minutes. The hybrid sensor response characteristics are shown to systematically depend on hydrogel cross‐linking density and applied target analyte concentration. Additionally, effects due to responsive hydrogel confinement in a porous template are shown to depend on pore size and architecture of the PSi transducer substrate. Sufficient copolymer and water is removed from the PSi transducer upon dissolution and drying of the hydrogel to induce color changes that can be detected by the unaided eye. This highlights the potential for future development for point‐of‐care diagnostic biosensing.  相似文献   

4.
Novel light emitting electrochemical cells (LECs) are fabricated using CdSe‐CdS (core‐shell) quantum dots (QDs) of tuned size and emission blended with polyvinylcarbazole (PVK) and the ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIM‐PF6). The performances of cells constructed using sequential device layers of indium tin oxide (ITO), poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS), the QD/PVK/IL active layer, and Al are evaluated. Only color saturated electroluminescence from the QDs is observed, without any other emissions from the polymer host or the electrolyte. Blue, green, and red QD‐LECs are prepared. The maximum brightness (≈1000 cd m‐2) and current efficiency (1.9 cd A‐1) are comparable to polymer LECs and multilayer QD‐LEDs. White‐light QD‐LECs with Commission Internationale d'Eclairage (CIE) coordinates (0.33, 0.33) are prepared by tuning the mass ratio of R:G:B QDs in the active layer and voltage applied. Transparent QD‐LECs fabricated using transparent silver nanowire (AgNW) composites as the cathode yield an average transmittance greater than 88% over the visible range. Flexible devices are demonstrated by replacing the glass substrates with polyethylene terephthalate (PET).  相似文献   

5.
Macroporous silicon microcavities for detection of large biological molecules have been fabricated from highly doped n‐type silicon. Well‐defined controllable pore sizes up to 120 nm have been obtained by systematically optimizing the etching parameters. The dependence of the sensor sensitivity on pore size is discussed. Excellent infiltration inside these macroporous silicon microcavities is demonstrated using 60 nm diameter latex spheres and rabbit IgG (150 kDa; 1Da = 1 g mol–1). The sensing performance of the device is tested using a biotin/streptavidin couple, and protein concentration down to 1–2 μM (equivalent to 0.3 ng mm–2) could be detected. Simulations show that the sensitivity of the technique is currently approximately 1–2 % of a protein monolayer.  相似文献   

6.
High‐quality violet‐blue emitting ZnxCd1‐xS/ZnS core/shell quantum dots (QDs) are synthesized by a new method, called “nucleation at low temperature/shell growth at high temperature”. The resulting nearly monodisperse ZnxCd1‐xS/ZnS core/shell QDs have high PL quantum yield (near to 100%), high color purity (FWHM) <25 nm), good color tunability in the violet‐blue optical window from 400 to 470 nm, and good chemical/photochemical stability. More importantly, the new well‐established protocols are easy to apply to large‐scale synthesis; around 37 g ZnxCd1‐xS/ZnS core/shell QDs can be easily synthesized in one batch reaction. Highly efficient deep‐blue quantum dot‐based light‐emitting diodes (QD‐LEDs) are demonstrated by employing the ZnxCd1‐xS/ZnS core/shell QDs as emitters. The bright and efficient QD‐LEDs show a maximum luminance up to 4100 cd m?2, and peak external quantum efficiency (EQE) of 3.8%, corresponding to 1.13 cd A?1 in luminous efficiency. Such high value of the peak EQE can be comparable with OLED technology. These results signify a remarkable progress, not only in the synthesis of high‐quality QDs but also in QD‐LEDs that offer a practicle platform for the realization of QD‐based violet‐blue display and lighting.  相似文献   

7.
Advances in nanotechnology research on quantum dots (QDs)—water soluble ZnS‐capped, CdSe fluorescent semiconductor nanocrystals—for in vivo biomedical applications have prompted a close scrutiny of the behavior of nanostructures in vivo. Data pertaining to pharmacokinetics and toxicity will undoubtedly assist in designing better in vivo nanostructure contrast agents or therapies. In vivo kinetics, clearance, and metabolism of semiconductor QDs are characterized following their intravenous dosing in Sprague–Dawley rats. The QDs coated with the organic molecule mercaptoundecanoic acid and crosslinked with lysine (denoted as QD‐LM) are cleared from plasma with a clearance of 0.59 ± 0.16 mL min–1 kg–1. A higher clearance (1.23 ± 0.22 mL min–1 kg–1) exists when the QDs are conjugated to bovine serum albumin (denoted as QD‐BSA, P < .05 (P = statistical significance). The biodistribution between these two QDs is also different. The liver takes up 40 % of the QD‐LM dose and 99 % of QD‐BSA dose after 90 min. Small amounts of both QDs appear in the spleen, kidney, and bone marrow. However, QDs are not detected in feces or urine for up to ten days after intravenous dosing.  相似文献   

8.
A new procedure for the cosensitization with quantum dots (QDs) and dyes for sensitized solar cells is reported here. Cascade cosensitization of TiO2 electrodes is obtained by the sensitization with CdS QDs and zinc phthalocyanines (ZnPcs), in which ZnPcs containing a sulfur atom are specially designed to produce a cascade injection by direct attachment to QDs. This strategy causes a double synergetic interaction. This is the differentiating point of cascade cosensitization in comparison with other approaches in which dyes with conventional functionalization are anchored to TiO2 electrodes. Cosensitization produces a panchromatic response from the visible to near‐IR region already observed with other sensitization strategies. However, cascade cosensitization produces in addition a synergistic interaction between QDs and dye, that it is not merely limited to the complementary light absorption, but dye enhances the efficiency of QD sensitization acting as a passivating agent. The cascade cosensitization concept is demonstrated with using [Co(phen)3]3+/2+ redox electrolyte. The TiO2/CdS QD‐ZnPc/[Co(phen)3]3+/2+ sensitized solar cell shows a large improvement of short‐circuit photocurrent and open‐circuit voltage in comparison with samples just sensitized with QDs. The advent of such cosensitized QD‐ZnPc solar cells paves the way to extend the absorbance region of the promising QD‐based solar cells and the development of a new family of molecules designed for this purpose.  相似文献   

9.
We investigate a new method for forming large‐area (> cm2) ordered monolayers of colloidal nanocrystal quantum dots (QDs). The QD thin films are formed in a single step by spin‐casting a mixed solution of aromatic organic materials and aliphatically capped QDs. The two different materials phase separate during solvent drying, and for a predefined set of conditions the QDs can assemble into hexagonally close‐packed crystalline domains. We demonstrate the robustness and flexibility of this phase‐separation process, as well as how the properties of the resulting films can be controlled in a precise and repeatable manner. Solution concentration, solvent ratio, QD size distribution, and QD aspect ratio affect the morphology of the cast thin‐film structure. Controlling all of these factors allows the creation of colloidal‐crystal domains that are square micrometers in size, containing tens of thousands of individual nanocrystals per grain. Such fabrication of large‐area, engineered layers of nanoscale materials brings the beneficial properties of inorganic QDs into the realm of nanotechnology. For example, this technique has already enabled significant improvements in the performance of QD light‐emitting devices.  相似文献   

10.
Quasi type‐II PbSe/PbS quantum dots (QDs) are employed in a solid state high efficiency QD/TiO2 heterojunction solar cell. The QDs are deposited using layer‐by‐layer deposition on a half‐micrometer‐thick anatase TiO2 nanosheet film with (001) exposed facets. Theoretical calculations show that the carriers in PbSe/PbS quasi type‐II QDs are delocalized over the entire core/shell structure, which results in better QD film conductivity compared to PbSe QDs. Moreover, PbS shell permits better stability and facile electron injection from the QDs to the TiO2 nanosheets. To complete the electrical circuit of the solar cell, a Au film is evaporated as a back contact on top of the QDs. This PbSe/PbS QD/TiO2 heterojunction solar cell produces a light to electric power conversion efficiency (η) of 4% with short circuit photocurrent (Jsc) of 17.3 mA/cm2. This report demonstrates highly efficient core/shell near infrared QDs in a QD/TiO2 heterojunction solar cell.  相似文献   

11.
A new type of quantum dot (QD) ligand chemistry is introduced that can provide positive, negative, or zwitterionic surface QDs. CdSe/CdZnS core‐shell QDs are decorated with ligands, and the non‐specific and specific interactions of the QDs through their surface charge are investigated with the focus on cellular adsorptions and endocytosis. Zwitterionic QDs are compact with a ligand hydrodynamic thickness of less than 2 nm, they are colloidally very stable over a broad pH range and even in saturated NaCl solution, and they show minimal non‐specific adsorptions. Positive and negative QDs show a very different behavior for cellular adsorption and subsequent incorporation, suggesting mostly energy‐independent pathways for positive QDs and exclusively adenosine triphosphate (ATP)‐dependent pathways for negative QDs. The zwitterionic QD surface ligands can also be used in conjunction with other functional groups, which allows simple conjugations for highly specific targeting whereas retaining the advantages of a zwitterionic QD surface. This QD surface chemistry can provide highly specific and very sensitive imaging with very low background level. Using the mixed QD surface ligand system, we demonstrated streptavidin and antibody QD conjugates that show a signal‐to‐noise ratio that is over 4000 times higher than the unconjugated mixture, which was used as a control case. The QD chemistry reported herein can be easily extended to other functional groups, such as alkynes, azides, or other amines, and can be further used in many future applications, including single‐QD level experiments, sensitive assays, or in vivo applications using anti‐fouling QD probes.  相似文献   

12.
A new type of quantum dot (QD) ligand chemistry is introduced that can provide positive, negative, or zwitterionic surface QDs. CdSe/CdZnS core‐shell QDs are decorated with ligands, and the non‐specific and specific interactions of the QDs through their surface charge are investigated with the focus on cellular adsorptions and endocytosis. Zwitterionic QDs are compact with a ligand hydrodynamic thickness of less than 2 nm, they are colloidally very stable over a broad pH range and even in saturated NaCl solution, and they show minimal non‐specific adsorptions. Positive and negative QDs show a very different behavior for cellular adsorption and subsequent incorporation, suggesting mostly energy‐independent pathways for positive QDs and exclusively adenosine triphosphate (ATP)‐dependent pathways for negative QDs. The zwitterionic QD surface ligands can also be used in conjunction with other functional groups, which allows simple conjugations for highly specific targeting whereas retaining the advantages of a zwitterionic QD surface. This QD surface chemistry can provide highly specific and very sensitive imaging with very low background level. Using the mixed QD surface ligand system, we demonstrated streptavidin and antibody QD conjugates that show a signal‐to‐noise ratio that is over 4000 times higher than the unconjugated mixture, which was used as a control case. The QD chemistry reported herein can be easily extended to other functional groups, such as alkynes, azides, or other amines, and can be further used in many future applications, including single‐QD level experiments, sensitive assays, or in vivo applications using anti‐fouling QD probes.  相似文献   

13.
Addressing the surface chemistry of silicon is of fundamental scientific and technical significance due to the wide use of this material in electronics and optics. A novel method of functionalizing silicon (Si) via short peptides with binding specificity for Si is presented. The peptide presenting the highest affinity for Si is identified via phage display technology, and the 12‐mer LLADTTHHRPWT and SPGLSLVSHMQT peptides were found to be specific for the n+‐Si and p+‐Si surfaces, respectively. In our sensing application, the obtained peptides are used as functionalizing linkers to allow porous silicon microcavities to bind biotin and then capture streptavidin. Molecular detection is monitored via reflectometric interference spectra as shifts in the resonance peaks of the cavity structure. An improved streptavidin sensing (21 times lower detection limit) with peptide‐functionalized porous silicon microcavities is demonstrated, compared to sensing performed with devices functionalized with the commonly used silanization method, suggesting that the modification of Si via Si‐specific peptides provides better interface layers for molecular detection. High‐resolution atomic force microscopy images corroborate this result and reveal the formation of ordered nanometer‐sized molecular layers when peptide‐route functionalization is performed.  相似文献   

14.
The fabrication of bio‐hybrid functional films is demonstrated by applying a materials assembly technique. Based on the hierarchical structures of silk fibroin materials, functional molecular/materials, i.e., quantum dots (QDs), can be fixed to amino acid groups in silk fibroin films. It follows that white‐light‐emitting QD silk hybrid films are obtained by hydrogen bond molecular recognition to the –COO groups functionalized to blue luminescent ZnSe (5.2 nm) and yellow luminescent CdTe (4.1 nm) QDs in a molar ratio of 30:1 of ZnSe to CdTe QDs. Simultaneously, a systematic blue shift in the emission peak is observed from the QD solution to QDs silk fibroin films. The significant blue shift hints the appearance of the strong interaction between QDs and silk fibroins, which causes strong white‐light‐emitting uniform silk films. The molecular recognized interactions are confirmed by high resolution transmission electron microscopy, field scanning electron microscope, and attenuated total internal reflectance Fourier transform infrared spectroscopy. The QD silk films show unique advantages, including simple preparation, tunable white‐light emission, easy manipulation, and low fabrication costs, which make it a promising candidate for multicomponent optodevices.  相似文献   

15.
Creating secondary nanostructures from fundamental building blocks with simultaneous high loading capacity and well‐controlled size/uniformity, is highly desired for nanoscale synergism and integration of functional units. Here a novel strategy is reported for hydrophobic quantum dots (QDs) assembley with porous templates, to form pitaya‐type fluorescent silica colloids with densely packed and intact QDs throughout the silica matrix. The mercapto‐terminated dendritic silica spheres with highly accessible central–radial pores and metal‐affinity interior surface, are adopted as a powerful absorbent host for direct immobilization of QDs from organic phase with high loading capacity. The alkylsilane mediated silica encapsulation prevents QDs' optical degradation induced by ligand exchange and favors the homogeneous silica shell formation. These multiple QD embedded silica spheres exhibit good compatibility for different colored QDs with well‐preserved fluorescence, high colloidal/optical stability, and versatile surface functionality. It is demonstrated that after integration with a lateral flow strip platform, these silica colloids provide an ultrasensitive, specific, and robust immunoassay for C‐reaction protein in clinical samples as promising fluorescent reporters.  相似文献   

16.
A serious obstacle to the construction of high‐capacity optical barcodes in suspension array technology is energy transfer, which can prompt unpredictable barcode signals, limited barcode numbers, and the need for an unfeasible number of experimental iterations. This work reports an effective and simple way to eliminate energy transfer in multicolor quantum dots (QDs)‐encoded microbeads by incorporating tetrapod CdSe/CdS QDs with a large Stokes shift (about 180 nm). Exploiting this unique feature enables the facile realization of a theoretical 7 × 7‐1 barcoding matrix combining two colors and seven intensity levels. As such, microbeads containing tetrapod CdSe/CdS QDs are demonstrated to possess a powerful encoding capacity which allows for precise barcode design. The ability of the Shirasu porous glass membrane emulsification method to easily control microbead size facilitates the establishment of a 3D barcode library of 144 distinguishable barcodes, indicating the enormous potential to enable large‐scale multiplexed detection. Moreover, when applied for the multiplexed detection of five common allergens, these barcodes exhibit superior detection performance (limit of detection: 0.01–0.02 IU mL?1) for both spiked and patient serum samples. Therefore, this new coding strategy helps to expand barcoding capacity while simultaneously reducing the technical and economic barriers to the optical encoding of microbeads for high‐throughput multiplexed detection.  相似文献   

17.
Magnetic/fluorescent barcodes, which combine quantum dots (QDs) and superparamagnetic nanoparticles in micrometer‐sized host microspheres, are promising for automatic high‐throughput multiplexed biodetection applications and “point of care” biodetection. However, the fluorescence intensity of QDs sharply decreases after addition of magnetic nanoparticles (MNPs) due to absorption by MNPs, and thus, the encoding capacity of QDs becomes more limited. Furthermore, the intrinsic toxicity of cadmium‐based QDs, the most commonly used QD in barcodes, has significant risks to human health and the environment. In this work, to alleviate fluorescence quenching and intrinsic toxicity, cadmium‐free NIR‐emitting CuInS2/ZnS QDs and Fe3O4 MNPs are successfully incorporated into poly(styrene‐co‐maleic anhydride) microspheres by using the Shirasu porous glass membrane emulsification technique. A “single‐wavelength” encoding model is successfully constructed to guide the encoding of NIR QDs with wide emission spectra. Then, a “single‐wavelength” encoding combined with size encoding is used to produce different optical codes by simply changing the wavelength and the intensity of the QDs as well as the size of the barcode microspheres. 48 barcodes are easily created due to the greatly reduced energy transfer between the NIR‐emitting QDs and MNPs. The resulting bifunctional barcodes are also combined with a flow cytometer using one laser for multiplexed detection of five tumor markers in one test. Assays based on these barcodes are significantly more sensitive than non‐magnetic and traditional ELISA assays. Moreover, validating experiments also show good performance of the bifunctional barcodes‐based suspension array when dealing with patient serum samples. Thus, magnetic/fluorescent barcodes based on NIR‐emitting CuInS2/ZnS QDs are promising for multiplexed bioassay applications.  相似文献   

18.
InAs quantum dots (QDs) have been incorporated to bandgap engineer the (In)GaAs junction of (In)GaAs/Ge double‐junction solar cells and InGaP/(In)GaAs/Ge triple‐junction solar cells on 4‐in. wafers. One sun AM0 current–voltage measurement shows consistent performance across the wafer. Quantum efficiency analysis shows similar aforementioned bandgap performance of baseline and QD solar cells, whereas integrated sub‐band gap current of 10 InAs QD layers shows a gain of 0.20 mA/cm2. Comparing QD double‐junction solar cells and QD triple‐junction solar cells to baseline structures shows that the (In)GaAs junction has a Voc loss of 50 mV and the InGaP 70 mV. Transmission electron microscopy imaging does not reveal defective material and shows a buried QD density of 1011 cm−2, which is consistent with the density of QDs measured on the surface of a test structure. Although slightly lower in efficiency, the QD solar cells have uniform performance across 4‐in. wafers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm?3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated.  相似文献   

20.
Lead sulfide (PbS) and cadmium sulfide (CdS) quantum dots (QDs) are prepared over mesoporous TiO2 films by a successive ionic layer adsorption and reaction (SILAR) process. These QDs are exploited as a sensitizer in solid‐state solar cells with 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as a hole conductor. High‐resolution transmission electron microscopy (TEM) images reveal that PbS QDs of around 3 nm in size are distributed homogeneously over the TiO2 surface and are well separated from each other if prepared under common SILAR deposition conditions. The pore size of the TiO2 films and the deposition medium are found to be very critical in determining the overall performance of the solid‐state QD cells. By incorporating promising inorganic QDs (PbS) and an organic hole conductor spiro‐OMeTAD into the solid‐state cells, it is possible to attain an efficiency of over 1% for PbS‐sensitized solid‐state cells after some optimizations. The optimized deposition cycle of the SILAR process for PbS QDs has also been confirmed by transient spectroscopic studies on the hole generation of spiro‐OMeTAD. In addition, it is established that the PbS QD layer plays a role in mediating the interfacial recombination between the spiro‐OMeTAD+ cation and the TiO2 conduction band electron, and that the lifetime of these species can change by around 2 orders of magnitude by varying the number of SILAR cycles used. When a near infrared (NIR)‐absorbing zinc carboxyphthalocyanine dye (TT1) is added on top of the PbS‐sensitized electrode to obtain a panchromatic response, two signals from each component are observed, which results in an improved efficiency. In particular, when a CdS‐sensitized electrode is first prepared, and then co‐sensitized with a squarine dye (SQ1), the resulting color change is clearly an addition of each component and the overall efficiencies are also added in a more synergistic way than those in PbS/TT1‐modified cells because of favorable charge‐transfer energetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号