首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg3Sb2-based intermetallic compounds with exceptionally high thermoelectric performance exhibit unconventional n-type dopability and anomalously low thermal conductivity, attracting much attention to the underlying mechanisms. To date, investigations have been limited to first-principle calculations and thermodynamic analysis of defect formation, and detailed experimental analysis on crystal structure and phonon modes has not been achieved. Here, a synchrotron X-ray diffraction study clarifies that, against a previous view of a simple crystal structure with a small unit cell, Mg3Sb2 is inherently a heavily disordered material with Frenkel defects, charge-neutral defect complexes of cation vacancies and interstitials. Ionic charge neutrality preserved in Mg3Sb2 is responsible for exotic n-type dopability, which is unachievable for other Zintl phase materials. The thermal conductivity of Mg3Sb2 exhibits deviation from the standard T−1 temperature dependency with strongly limited phonon transport due to a strain field. Inelastic X-ray scattering measurement reveals enhanced phonon scattering induced by disorder. The results will draw renewed attention to crystal defects and disorder as means to explore new high-performance thermoelectric materials.  相似文献   

2.
Thermoelectric materials with high figure of merit, which requires large Seebeck coefficient, large electrical conductivity, and low thermal conductivity, are of great importance in solid-state cooling and power generation. Solid-solution formation is one effective method to achieve low thermal conductivity by phonon scattering due to mass and strain field fluctuations. This type of scattering is maximized in structures containing vacancies. The thermoelectric properties of Ga2Te3-GaSb vacancy compounds were studied in this work. We find that the lattice thermal conductivity is reduced by over an order of magnitude with the addition of only very moderate amounts of Ga2Te3. Additionally, both the carrier type and concentration can be modified. While the vacancy structure induced by Ga2Te3 addition to GaSb can effectively reduce phonon conductivity, carrier mobility is also degraded, and optimized thermoelectric properties require careful control of the vacancy content in these solid solutions.  相似文献   

3.
The phonon thermal conductivity of misfit-layered Ca3Co4O9 has been calculated by perturbed molecular dynamics using a classical force field. Detailed numerical analyses reveal that, in spite of its smaller cross-sectional area, the CoO2 layer transports more heat than the thicker rock salt (RS) layer, although its local thermal conduction is more suppressed than in another layered cobaltite, Na x CoO2. The origins of these differences have been elucidated through careful examination of the atomic arrangements in each layer. Since thermal conduction in the RS layer can be reduced without deteriorating electronic properties for which the CoO2 layer is responsible, it is suggested that the RS layer should be modified to further suppress the overall in-plane thermal conductivity. Computational experiments with increasing number of Ca–O planes in the RS layer showed the opposite trend to what can be predicted based on the misfit between two dissimilar layers. Further analyses to reveal the origin of these unexpected results provide yet another strategy to further decrease the thermal conductivity, namely to control the dynamic interference between atoms across the interface between two layers.  相似文献   

4.
Forming solid solutions has long been considered an effective approach for good thermoelectrics because the lattice thermal conductivities are lower than those of the constituent compounds due to phonon scattering from disordered atoms. However, this effect could also be compensated by a reduction in carrier mobility due to electron scattering from the same disorder. Using a detailed study of n‐type (PbTe)1–x (PbSe)x solid solution (0 ≤ x ≤ 1) as a function of composition, temperature, and doping level, quantitative modeling of transport properties reveals the important parameters characterizing these effects. Based on this analysis, a general criterion for the improvement of zT due to atomic disorder in solid solutions is derived and can be applied to several thermoelectric solid solutions, allowing a convenient prediction of whether better thermoelectric performance could be achieved in a given solid solution. Alloying is shown to be most effective at low temperatures and in materials that are unfavorable for thermoelectrics in their unalloyed forms: high lattice thermal conductivity (stiff materials with low Grüneisen parameters) and high deformation potential.  相似文献   

5.
The reduction of thermal conductivity, and a comprehensive understanding of the microstructural constituents that cause this reduction, represent some of the important challenges for the further development of thermoelectric materials with improved figure of merit. Model PbTe‐based thermoelectric materials that exhibit very low lattice thermal conductivity have been chosen for this microstructure–thermal conductivity correlation study. The nominal PbTe0.7S0.3 composition spinodally decomposes into two phases: PbTe and PbS. Orderly misfit dislocations, incomplete relaxed strain, and structure‐modulated contrast rather than composition‐modulated contrast are observed at the boundaries between the two phases. Furthermore, the samples also contain regularly shaped nanometer‐scale precipitates. The theoretical calculations of the lattice thermal conductivity of the PbTe0.7S0.3 material, based on transmission electron microscopy observations, closely aligns with experimental measurements of the thermal conductivity of a very low value, ~0.8 W m?1 K?1 at room temperature, approximately 35% and 30% of the value of the lattice thermal conductivity of either PbTe and PbS, respectively. It is shown that phase boundaries, interfacial dislocations, and nanometer‐scale precipitates play an important role in enhancing phonon scattering and, therefore, in reducing the lattice thermal conductivity.  相似文献   

6.
The concept of nanocomposite/nanostructuring in thermoelectric materials has been proven to be an effective paradigm for optimizing the high thermoelectric performance primarily by reducing the thermal conductivity. In this work, we have studied the microstructure details of nanocomposites derived by incorporating a semi-metallic Bi nanoparticle phase in Bi2Te3 matrix and its correlation mainly with the reduction in the lattice thermal conductivity. Incorporating Bi inclusion in Bi2Te3 bulk thermoelectric material results in a substantial increase in the power factor and simultaneous reduction in the thermal conductivity. The main focus of this work is the correlation of the microstructure of the composite with the reduction in thermal conductivity. Thermal conductivity of the matrix and nanocomposites was derived from the thermal diffusivity measurements performed from room temperature to 150 °C. Interestingly, significant reduction in total thermal conductivity of the nanocomposite was achieved as compared to that of the matrix. A detailed analysis of high-resolution transmission electron microscope images reveals that this reduction in the thermal conductivity can be ascribed to the enhanced phonon scattering by distinct microstructure features such as interfaces, grain boundaries, edge dislocations with dipoles, and strain field domains.  相似文献   

7.
Temperature variation-induced thermoelectric catalytic efficiency of thermoelectric material is simultaneously restricted by its electrical conductivity, Seebeck coefficient, and thermal conductivity. Herein, Bi2Te3 nanosheets are in situ grown on reduced graphene oxides (rGO) to generate an efficient photo-thermoelectric catalyst (rGO-Bi2Te3). This system exhibits phonon scattering effect and extra carrier transport channels induced by the formed heterointerface between rGO and Bi2Te3, which improves the power factor value and reduces thermal conductivity, thus enhancing the thermoelectric performance of 2.13 times than single Bi2Te3. The photo-thermoelectric catalysis of rGO-Bi2Te3 significantly improves the reactive oxygen species yields, resulting from the effective electron–hole separation caused by the unique thermoelectric field and heterointerfaces of rGO-Bi2Te3. Correspondingly, the electrospinning membranes containing rGO-Bi2Te3 nanosheets exhibit high antibacterial efficiency in vivo (99.35 ± 0.29%), accelerated tissue repair ability, and excellent biosafety. This study provides an insight into heterointerface design in photo-thermoelectric catalysis.  相似文献   

8.
9.
This work studies the thermal conductivity and phonon scattering processes in a series of n‐type lead telluride‐lead selenide (PbTe–PbSe) nanostructured thin films grown by atomic layer deposition (ALD). The ALD growth of the PbTe–PbSe samples in this work results in nonepitaxial films grown directly on native oxide/Si substrates, where the Volmer–Weber mode of growth promotes grains with a preferred columnar orientation. The ALD growth of these lead‐rich PbTe, PbSe, and PbTe–PbSe thin films results in secondary oxide phases, along with an increase microstructural quality with increased film thickness. The compositional variation and resulting point and planar defects in the PbTe–PbSe nanostructures give rise to additional phonon scattering events that reduce the thermal conductivity below that of the corresponding ALD‐grown control PbTe and PbSe films. Temperature‐dependent thermal conductivity measurements show that the phonon scattering in these ALD‐grown PbTe–PbSe nanostructured materials, along with ALD‐grown PbTe and PbSe thin films, are driven by extrinsic defect scattering processes as opposed to phonon–phonon scattering processes intrinsic to the PbTe or PbSe phonon spectra. The implication of this work is that polycrystalline, nanostructured ALD composites of thermoelectric PbTe–PbSe films are effective in reducing the phonon thermal conductivity, and represent a pathway for further improvement of the figure of merit (ZT), enhancing their thermoelectric application potential.  相似文献   

10.
A practical and feasible bottom‐up chemistry approach is demonstrated to dramatically enhance thermoelectric properties of the Bi2Te3 matrix by means of exotically introducing silver nanoparticles (AgNPs) for constructing thermoelectric composites with the hierarchical two‐phased heterostructure. By regulating the content of AgNPs and fine‐tuning the architecture of nanostructured thermoelectric materials, more heat‐carrying phonons covering the broad phonon mean free path distribution range can be scattered. The results show that the uniformly dispersed AgNPs not only effectively suppress the growth of Bi2Te3 grains, but also introduce nanoscale precipitates and form new interfaces with the Bi2Te3 matrix, resulting in a hierarchical two‐phased heterostructure, which causes intense scattering of phonons with multiscale mean free paths, and therefore significantly reduce the lattice thermal conductivity. Meanwhile, the improved power factor is maintained due to low‐energy electron filtering and excellent electrical transport property of Ag itself. Consequently, the maximum ZT is amazingly found to be enhanced by 304% arising from the hierarchical heterostructure when the AgNPs content reaches 2.0 vol%. This study offers an easily scalable and low‐cost route to construct a wide range of multiscale hierarchically heterostructured bulk composites with significant enhancement of thermoelectric performance.  相似文献   

11.
Phonon thermal conductivity calculations for Li x CoO2, Na x CoO2, and K x CoO2 (x = 1, 0.5) have been carried out by perturbed molecular dynamics to clarify the dependence of thermal conductivity on alkali-metal vacancy concentration in these materials. While thermal conductivity decreased for all compounds upon introduction of alkali-metal vacancies, the magnitude of the decrease is strongly dependent on the size of the alkali-metal ion. Further numerical analyses using fictitious physical parameters reveal that, with increasing ionic radius, the two-dimensionality of the phonons in the CoO2 layers, which are responsible for overall thermal conductivity, is enhanced, resulting in lower thermal conductivity in vacancy-free compounds as well as ineffectiveness of alkali-metal vacancies in lowering thermal conductivity. In contrast, for systems with smaller alkali-metal ionic radius, even though higher thermal conductivity is predicted when no vacancies are present, vacancies are quite effective in significantly lowering thermal conductivity by modifying phonon states in the CoO2 layers, more so than in systems with larger alkali-metal vacancies.  相似文献   

12.
Thermoelectrics are being rapidly developed for waste heat recovery applications, particularly in automobiles, to reduce carbon emissions. PbTe‐based materials with small (<20 nm) nanoscale features have been previously shown to have high thermoelectric figure‐of‐merit, zT, largely arising from low lattice thermal conductivity particularly at low temperatures. Separating the various phonon scattering mechanisms and the electronic contribution to the thermal conductivity is a serious challenge to understanding, and further optimizing, these nanocomposites. Here we show that relatively large nanometer‐scale (50–200 nm) Ag2Te precipitates in PbTe can be controlled according to the equilibrium phase diagram and these materials show intrinsic semiconductor behavior with high electrical resistivity, enabling direct measurement of the phonon thermal conductivity. This study provides direct evidence that even large nanometer‐scale microstructures reduce thermal conductivity below that of a macro‐scale composite of saturated alloys with Kapitza‐type interfacial thermal resistance at the same overall composition. Carrier concentration control is achieved with lanthanum doping, enabling independent control of the electronic properties and microstructure. These materials exhibit lattice thermal conductivity which approaches the theoretical minimum above ~650 K, even lower than that found with small nanoparticles. Optimally La‐doped n‐type PbTe‐Ag2Te nanocomposites exhibit zT > 1.5 at 775 K.  相似文献   

13.
Energy‐related functionality and performance of organic–inorganic hybrid perovskites, such as methylammonium lead iodide (MAPbI3), highly depend on their thermal transport behavior. Using equilibrium molecular dynamics simulations, it is discovered that the thermal conductivities of MAPbI3 under different phases (cubic, tetragonal, and orthorhombic) are less than 1 W m?1 K?1, and as low as 0.31 W m?1 K?1 at room temperature. Such ultralow thermal conductivity can be attributed to the small phonon group velocities due to their low elastic stiffness, in addition to their short phonon lifetimes (<100 ps) and mean‐free‐paths (<10 nm) due to the enhanced phonon–phonon scattering from highly‐overlapped phonon branches. The anisotropy in thermal conductivity at lower temperatures is found to associate with preferential orientations of organic CH3NH3+ cations. Among all atomistic interactions, electrostatic interactions dominate thermal conductivities in ionic MAPbI3 crystals. Furthermore, thermal conductivities of general hybrid perovskites MABX3 (B = Pb, Sn; X = I, Br) have been qualitatively estimated and found that Sn‐ or Br‐based perovskites possess higher thermal conductivities than Pb‐ or I‐based ones due to their much higher elastic stiffness. This study inspires optimal selections and rational designs of ionic components for hybrid perovskites with desired thermal conductivity for thermally‐stable photovoltaic or highly‐efficient thermoelectric energy harvesting/conversion applications.  相似文献   

14.
It is understood that defects of the atomic arrangement of the lattice in 2D molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD) can have a profound effect on the electronic and optical properties. Beyond these it is a major prerequisite to also understand the fundamental effect of such defects on phonon transport, to guarantee the successful integration of MoS2 into the solid‐state devices. A comprehensive joint experiment‐theory investigation to explore the effect of lattice defects on the thermal transport of the suspended MoS2 monolayer grown by CVD is presented. The measured room temperature thermal conductivity values are 30 ± 3.3 and 35.5 ± 3 W m?1 K?1 for two samples, which are more than two times smaller than that of their exfoliated counterpart. High‐resolution transmission electron microscopy shows that these CVD‐grown samples are polycrystalline in nature with low angle grain boundaries, which is primarily responsible for their reduced thermal conductivity. Higher degree of polycrystallinity and aging effects also result in smoother temperature dependency of thermal conductivity (κ) at temperatures below 100 K. First‐principles lattice dynamics simulations are carried out to understand the role of defects such as isotopes, vacancies, and grain boundaries on the phonon scattering rates of our CVD‐grown samples.  相似文献   

15.
The thermoelectric (TE) performance of SrTiO3 (STO) 3D superlattice ceramics with 2D electron gas grain boundaries (GBs) was theoretically investigated. The grain size dependence of the power factor, lattice thermal conductivity, and ZT value were calculated by using Boltzmann transport equations. It was found that nanostructured STO ceramics with smaller grain size have larger ZT value. This is because the quantum confinement effect, energy filtering effect, and interfacial phonon scattering at GBs all become stronger with decreasing grain size, resulting in higher power factor and lower lattice thermal conductivity. These findings will aid the design of nanostructured oxide ceramics with high TE performance.  相似文献   

16.
Synergetic optimization of electrical and thermal transport properties is achieved for SnTe-based nano-crystalline materials. Gd doping is able to suppress the Sn vacancy, which is confirmed by positron annihilation measurements and corresponding theoretical calculations. Hence, the optimal hole carrier concentration is obtained, leading to the improvement of electrical transport performance and simultaneous decrease of electronic thermal conductivity. In addition, the incremental density of states effective mass m* in SnTe is realized by the promotion of the band convergence via Gd doping, which is further confirmed by the band structure calculation. Hence, the enhancement of the Seebeck coefficient is also achieved, leading to a high power factor of 2922 µW m−1 K−2 for Sn0.96Gd0.04Te at 900 K. Meanwhile, substantial suppression of the lattice thermal conductivity is observed in Gd-doped SnTe, which is originated from enhanced phonon scattering by multiple processes including mass and strain fluctuations due to the Gd doping, scattering of grain boundaries, nano-pores, and secondary phases induced by Gd doping. With the decreased phonon mean free path and reduced average phonon group velocity, a rather low lattice thermal conductivity is achieved. As a result, the synergetic optimization of the electric and thermal transport properties contributes to a rather high ZT value of ≈1.5 at 900 K, leading to the superior thermoelectric performance of SnTe-based nanoscale polycrystalline materials.  相似文献   

17.
Phase immiscibility in PbTe–based thermoelectric materials is an effective means of top‐down synthesis of nanostructured composites exhibiting low lattice thermal conductivities. PbTe1‐x Sx thermoelectric materials can be synthesized as metastable solid solution alloys through rapid quenching. Subsequent post‐annealing induces phase separation at the nanometer scale, producing nanostructures that increase phonon scattering and reduce lattice thermal conductivity. However, there has yet to be any study investigating in detail the local chemical structure of both the solid solution and nanostructured variants of this material system. Herein, quenched and annealed (i.e., solid solution and phase‐separated) samples of PbTe–PbS are analyzed by in situ high‐resolution synchrotron powder X‐ray diffraction, solid‐state 125Te nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy analysis. For high concentrations of PbS in PbTe, e.g., x >16%, NMR and IR analyses reveal that rapidly quenched samples exhibit incipient phase separation that is not detected by state‐of‐the‐art synchrotron X‐ray diffraction, providing an example of a PbTe thermoelectric “alloy” that is in fact phase inhomogeneous. Thermally‐induced PbS phase separation in PbTe–PbS occurs close to 200 °C for all compositions studied, and the solubility of the PbS phase in PbTe at elevated temperatures >500 °C is reported. The findings of this study suggest that there may be a large number of thermoelectric alloy systems that are phase inhomogeneous or nanostructured despite adherence to Vegard's Law of alloys, highlighting the importance of careful chemical characterization to differentiate between thermoelectric alloys and composites.  相似文献   

18.
Dense point defects can strengthen phonon scattering to reduce the lattice thermal conductivity and induce outstanding thermoelectric performance in GeTe-based materials. However, extra point defects inevitably enlarge carrier scattering and deteriorate carrier mobility. Herein, it is found that the interstitial Cu in GeTe can result in synergistic effects, which include: 1) strengthened phonon scattering, leading to ultralow lattice thermal conductivity of 0.48 W m−1 K−1 at 623 K; 2) weakened carrier scattering, contributing to high carrier mobility of 80 cm2 V−1 s−1 at 300 K; 3) optimized carrier concentration of 1.22 × 1020 cm−3. Correspondingly, a high figure-of-merit of ≈2.3 at 623 K can be obtained in the Ge0.93Ti0.01Bi0.06Te-0.01Cu, which corresponds to a maximum energy conversion efficiency of ≈10% at a temperature difference of 423 K. This study systematically investigates the doping behavior of the interstitial Cu in GeTe-based thermoelectric materials for the first time and demonstrates that the localized interstitial Cu is a new strategy to enhance the thermoelectric performance of GeTe-based thermoelectric materials.  相似文献   

19.
Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit (ZT) value of up to 1.33 at 373 K is obtained in Bi0.3Sb1.7Te3 incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi0.3Sb1.7Te3 matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano‐SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication.  相似文献   

20.
Titania embedded with layer-cracking nanostructures (sodium titanate) was synthesized by a hydrothermal method and a subsequent sintering process. The structure and morphology were determined by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption–desorption experiments. In thermoelectric investigations, this nanocomposite has reduced thermal conductivity, where the minimum reaches about 2.4 W/m K at 700°C. This value is relatively low among the transition-metal oxides. Strong boundary scattering at the interfaces of the layered nanostructures and point defect scattering resulting from volatilization of Na+ ions seem to be main reasons for the suppression of phonon heat transfer. On the other hand, the power factor shows no apparent deterioration. Our results suggest that introduction of proper layer-cracking nanostructures into thermoelectric hosts might be effective to enhance their performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号