共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic and hybrid thermoelectric (OHT) materials have attracted increasing research interest over the past decade. Thermal conductivity measurement plays a critical role in evaluating and improving the thermoelectric performance of various types of these novel materials, ranging from bulks to low‐dimensional structures. Commonly used and newly developed techniques for thermal conductivity measurement, most of which have been applied to OHT materials in recent years, are reviewed. They are categorized as steady‐state methods, time‐domain methods, or frequency‐domain methods. The operating principles, merits and limitations, technical issues, and application examples for each technique are also discussed. 相似文献
2.
V. Ponnambalam Bo Zhang Terry M. Tritt S. Joseph Poon 《Journal of Electronic Materials》2007,36(7):732-735
The usefulness of half-Heusler (HH) alloys as thermoelectrics has been mainly limited by their relatively large thermal conductivity,
which is a key issue despite their high thermoelectric power factors. In this regard, Bi-containing half-Heusler alloys are
particularly appealing, because they are, potentially, of low thermal conductivity. One such a material is ZrCoBi. We prepared
pure and Ni-doped ZrCoBi by a solid-state reaction. To evaluate thermoelectric potential we measured electrical resistivity
(ρ = 1/σ) and thermopower (σ) up to 1000 K and thermal conductivity (κ) up to 300 K. Our measurements indicate that for these alloys resistivity of approximately a few mΩ cm and thermopower larger
than a hundred μV K−1 are possible. Low κ values are also possible. On the basis of these data we conclude that this system has a potential to be optimized further,
despite the low power factors (α
2
σT) we have currently measured. 相似文献
3.
Huimei Pang Yongxin Qin Bingchao Qin Lingxiao Yu Xianli Su Hao Liang Zhen-Hua Ge Qian Cao Qing Tan Li-Dong Zhao 《Advanced functional materials》2024,34(33):2401716
The coupling relationship between electrical and thermal transports makes it rather challenging to enhance thermoelectric performance. Here, electrical and thermal transports are successfully decoupled to realize high performance in n-type PbSe by utilizing a stepwise strategy. First, the PbSe lattice is plained with extra Pb to compensate for the intrinsic Pb vacancies, which can weaken defect scattering and improve carrier mobility to ≈1230 cm2 V−1 s−1. The room-temperature power factor triples and reaches ≈32 µW cm−1 K−2, and ZT is significantly enhanced to ≈0.6 in Pb1.006Se. Subsequently, liquid-like interstitial Cu ions are introduced to inhibit heat conduction without damaging electrical transport. While maintaining a high power factor of ≈25 µW cm−1 K−2, Cu ions strongly suppress phonon transport at high temperature, leading to an ultralow lattice thermal conductivity of ≈0.28 W m−1 K−1 in Pb1.006Cu0.006Se, only 30% of the Cu-free PbSe. Eventually, a remarkable peak ZT of ≈1.8 at 773 K is achieved along with a high average ZT of ≈1.1 from 300 to 823 K in Pb1.006Cu0.006Se. An outstanding experimental conversion efficiency of ≈7.1% is obtained in the single-leg device, demonstrating great potential for PbSe as low- to mid-temperature thermoelectrics. 相似文献
4.
Yanzhong Pei Linglang Zheng Wen Li Siqi Lin Zhiwei Chen Yanying Wang Xiangfan Xu Hulei Yu Yue Chen Binghui Ge 《Advanced Electronic Materials》2016,2(6)
Due to point defect phonon scattering, formation of solid solutions has long been considered as an effective approach for enhancing thermoelectric performance through reducing the lattice thermal conductivity. The scattering of phonons by point defects mainly comes from the mass and strain fluctuations between the guest and the host atoms. Both the fluctuations can be maximized by point defects of interstitial atoms and/or vacancies in a crystal. Here, a demonstration of phonon scattering by interstitial Cu atoms is shown, leading to an extremely low lattice thermal conductivity of 0.5 W m−1 K−1 in SnTe‐Cu2Te solid solutions. This is the lowest lattice thermal conductivity reported in SnTe‐based materials so far, which is actually approaching the amorphous limit of SnTe. As a result, a peak thermoelectric figure of merit, zT, higher than 1 is achieved in Sn0.94Cu0.12Te at 850 K, without relying on other approaches for electrical performance enhancements. The strategy used here is believed to be equally applicable in thermoelectrics with interstitial point defects. 相似文献
5.
Yuanyuan Cui Jing Liu Zhiqiang Li Mingyang Ji Meng Zhao Meihua Shen Xue Han Tao Jia Chenglong Li Yue Wang 《Advanced functional materials》2021,31(49):2106247
Recently, owing to the great structural tunability, excellent photothermal property, and strong photobleaching resistance, organic-small-molecule photothermal materials are proposed as promising solar absorbent materials. Herein, through fusing two strong electron-withdrawing units dibenzo[f,h]quinoxaline and anthraquinone units, a rigid planar acceptor dibenzo[a,c]naphtho[2,3-h]phenazine-8,13-dione (PDN) with stronger electron-withdrawing ability is obtained and used to construct donor–acceptor-type organic-small-molecule solar-energy-absorbing material, 2,17-bis(diphenylamino)dibenzo[a,c]naphtho[2,3-h]phenazine-8,13-dione (DDPA-PDN). The new compound exhibits a strong intramolecular charge transfer character and conjugates rigid plane skeleton, endowing it with a broadband optical absorption from 300 to 850 nm in the solid state, favorable photothermal properties, high photothermal conversion ability, and good photobleaching resistance. Under laser irradiation at 655 nm, the solid photothermal conversion efficiency of the resulting DDPA-PDN molecule reaches 56.23%. Additionally, DDPA-PDN-loaded cellulose papers equipped with abundant microchannels for water flow are integrated with thermoelectric devices, thus achieving an evaporation rate and voltage as high as 1.07 kg m−2 h−1 and 83 mV under 1 kW m−2 solar irradiation, respectively. This study demonstrates the application of photothermal organic-small-molecules in water evaporation and power generation, therefore offering a valuable prospect of their utilization in solar energy harvesting. 相似文献
6.
Kunling Peng Zizhen Zhou Honghui Wang Hong Wu Jianjun Ying Guang Han Xu Lu Guoyu Wang Xiaoyuan Zhou Xianhui Chen 《Advanced functional materials》2021,31(24):2100583
The discovery of new, high-performing thermoelectrics is of vital importance to promoting thermal energy conversion efficiency. Herein, a new p-type thermoelectric material BaAgAs with an exceptional figure of merit (zT) surpassing 1.1 at 970 K is present as a promising candidate for high-temperature applications. Verified by comprehensive experimental and theoretical investigations, BaAgAs possesses two intrinsic features in favoring zT: i) low lattice thermal conductivity, ascribed to the heavy element Ba in a loose mono-hexagonal layer, the large mass fluctuation in the Ag-As honeycomb layer, and the alternately interlayer stacking between mono-hexagonal and honeycomb layers; ii) good electrical properties contributed by multiple band transport, due to the small band offset between two valence band extremums and the strong anisotropic band effective mass. With enhanced phonon–phonon scattering via Sb/Bi substitution on the As sites, the lattice thermal conductivity is minimized, which results in significantly enhanced zT values. Additionally, an inspiring prediction via the first-principles calculation suggests that n-type BaAgAs can potentially outperform its p-type counterpart due to its higher conducting band degeneracy. This study will stimulate intense interests in the exploration of compounds with planar honeycomb structures as new high-performance thermoelectric materials. 相似文献
7.
Lulu Zhao Naiming Lin Zhongkang Han Xie Li Haiyun Wang Jiaolin Cui 《Advanced Electronic Materials》2019,5(10)
Cu3SnS4 chalcogenide as a low‐cost, earth abundant thermoelectric material has recently attracted much attention. However, its Seebeck coefficient is rather low due to its metallic‐like behavior; therefore, substantial work is required to enhance its thermoelectric (TE) properties. In this work, an alternative method is proposed, that is, a regulation of the crystal structure through alloying with Cu3SbSe3. This regulation is realized by the incorporation of Sb and Se in the Cu3SnS4 host frame with an addition of Cu3SbSe3, thus altering the bond lengths (Cu S and Sn S) and bond angles (S Cu S and S Sn S), and leading to widening of the bandgap and the convergence of top valence bands. At the same time, the lattice thermal conductivity reduces by ≈50% at high temperatures, mainly triggered by the crystal structure distortion and introduced point defects. The approach of crystal structure regulation may help design the properties of other ternary Cu Sn(Sb) S(Se) compounds for TE applications. 相似文献
8.
Eric S. Toberer Alexandra Zevalkink Nicole Crisosto G. Jeffrey Snyder 《Advanced functional materials》2010,20(24):4375-4380
Understanding transport in Zintl compounds is important due to their unusual chemistry, structural complexity, and potential for good thermoelectric performance. Resistivity measurements indicate that undoped Ca5Al2Sb6 is a charge‐balanced semiconductor with a bandgap of 0.5 eV, consistent with Zintl–Klemm charge counting rules. Substituting divalent calcium with monovalent sodium leads to the formation of free holes, and a transition from insulating to metallic electronic behavior is observed. Seebeck measurements yield a hole mass of ~2me, consistent with a structure containing both ionic and covalent bonding. The structural complexity of Zintl compounds is implicated in their unusually low thermal conductivity values. Indeed, Ca5Al2Sb6 possesses an extremely low lattice thermal conductivity (0.6 W mK?1 at 850 K), which approaches the minimum thermal conductivity limit at high temperature. A single parabolic band model is developed and predicts that Ca4.75Na0.25Al2Sb6 possesses a near‐optimal carrier concentration for thermoelectric power generation. A maximum zT > 0.6 is obtained at 1000 K.Beyond thermoelectric applications, the semiconductor Ca5Al2Sb6 possesses a 1D covalent structure which should be amenable to interesting magnetic interactions when appropriately doped. 相似文献
9.
Yu‐Jia Zeng Dan Wu Xuan‐Hao Cao Wu‐Xing Zhou Li‐Ming Tang Ke‐Qiu Chen 《Advanced functional materials》2020,30(8)
The demands for waste heat energy recovery from industrial production, solar energy, and electronic devices have resulted in increasing attention being focused on thermoelectric materials. Over the past two decades, significant progress is achieved in inorganic thermoelectric materials. In addition, with the proliferation of wireless mobile devices, economical, efficient, lightweight, and bio‐friendly organic thermoelectric (OTE) materials have gradually become promising candidates for thermoelectric devices used in room‐temperature environments. With the development of experimental measurement techniques, the manufacturing for nanoscale thermoelectric devices has become possible. A large number of studies have demonstrated the excellent performance of nanoscale thermoelectric devices, and further improvement of their thermoelectric conversion efficiency is expected to have a significant impact on global energy consumption. Here, the development of experimental measurement methods, theoretical models, and performance modulation for nanoscale OTE materials are summarized. Suggestions and prospects for the future development of these devices are also provided. 相似文献
10.
Yue‐Xing Chen Zhen‐Hua Ge Meijie Yin Dan Feng Xue‐Qin Huang Wenyu Zhao Jiaqing He 《Advanced functional materials》2016,26(37):6836-6845
P‐type polycrystalline SnSe and K0.01Sn0.99Se are prepared by combining mechanical alloying (MA) and spark plasma sintering (SPS). The highest ZT of ≈0.65 is obtained at 773 K for undoped SnSe by optimizing the MA time. To enhance the electrical transport properties of SnSe, K is selected as an effective dopant. It is found that the maximal power factor can be enhanced significantly from ≈280 μW m?1 K?2 for undoped SnSe to ≈350 μW m?1 K?2 for K‐doped SnSe. It is also observed that the thermal conductivity of polycrystalline SnSe can be enhanced if the SnSe powders are slightly oxidized. Surprisingly, after K doping, the absence of Sn oxides at grain boundaries and the presence of coherent nanoprecipitates in the SnSe matrix contribute to an impressively low lattice thermal conductivity of ≈0.20 W m?1 K?1 at 773 K along the sample section perpendicular to pressing direction of SPS. This extremely low lattice thermal conductivity coupled with the enhanced power factor results in a record high ZT of ≈1.1 at 773 K along this direction in polycrystalline SnSe. 相似文献
11.
12.
13.
Jiahe Zhang Xuemei Wang Hongfen Li Hanfang Zhang Yihe Zhang Ke Wang 《Advanced functional materials》2023,33(44):2301974
Layered crystal materials have blazed a promising trail in the design and optimization of electrodes for magnesium ion batteries (MIBs). The layered crystal materials effectively improve the migration kinetics of the Mg2+ storage process to deliver a high energy and power density. To meet the future demand for high-performance MIBs, significant work has been applied to layered crystal materials, including crystal modification, mechanism investigation, and micro/nanostructure design. Herein, this review presents a comprehensive overview of layered crystal materials applied to MIBs, from development history to current applications. It focuses on the relationship between the layered crystal structure and the energy storage mechanism. Meanwhile, recent achievements in the design principles of layered crystal materials and their application to electrodes are summarized. Finally, future perspectives on the application of layered materials in MIBs are presented. The overview of the development process and structural characteristics contributes to a thorough understanding of these materials, while a discussion of design strategies and practical applications can inspire further research. Therefore, this review provides guidance and assistance for constructing high-performance MIBs. 相似文献
14.
Enhancement of thermopower is achieved by doping the narrow‐band semiconductor Ag6.52Sb6.52Ge36.96Te50 (acronym TAGS‐85), one of the best p‐type thermoelectric materials, with 1 or 2% of the rare earth dysprosium (Dy). Evidence for the incorporation of Dy into the lattice is provided by X‐ray diffraction and increased orientation‐dependent local fields detected by 125Te NMR spectroscopy. Since Dy has a stable electronic configuration, the enhancement cannot be attributed to 4f‐electron states formed near the Fermi level. It is likely that the enhancement is due to a small reduction in the carrier concentration, detected by 125Te NMR spectroscopy, but mostly due to energy filtering of the carriers by potential barriers formed in the lattice by Dy, which has large both atomic size and localized magnetic moment. The interplay between the thermopower, the electrical resistivity, and the thermal conductivity of TAGS‐85 doped with Dy results in an enhancement of the power factor (PF) and the thermoelectric figure of merit (ZT) at 730 K, from PF = 28 μW cm?1 K?2 and ZT ≤ 1.3 in TAGS‐85 to PF = 35 μW cm?1 K?2 and ZT ≥ 1.5 in TAGS‐85 doped with 1 or 2% Dy for Ge. This makes TAGS‐85 doped with Dy a promising material for thermoelectric power generation. 相似文献
15.
16.
The notion of a locally resonant metamaterial—widely applied to light and sound—has recently been introduced to heat, whereby the thermal conductivity is reduced primarily by intrinsic localized atomic vibrations rather than scattering mechanisms. This article reviews and analyzes this new emerging concept, termed nanophononic metamaterial (NPM), and contrasts it with the competing concept of a nanophononic crystal (NPC) in which thermal conductivity reduction is realized primarily via nanoscale Bragg scattering. Both the NPM and NPC core mechanisms require the presence of a sufficient level of wave behavior, which is possible when there is a relatively wide distribution of the phonon mean free path (MFP). Silicon serves as a perfect material to form NPMs and NPCs given its relatively large average phonon MFP. This offers a unique opportunity considering silicon's abundance and mature fabrication technology. It is shown in this comparative study that while both the NPM and NPC nanosystems may be rendered to serve as extreme insulators of heat, an NPM may do so without excessive reduction in the minimum feature size–which is key to keeping the electrical properties intact. This trait makes a silicon‐based NPM poised to serve as a low‐cost thermoelectric material with exceptional performance. 相似文献
17.
Zhong‐Zhen Luo Xiaomi Zhang Xia Hua Gangjian Tan Trevor P. Bailey Jianwei Xu Ctirad Uher Chris Wolverton Vinayak P. Dravid Qingyu Yan Mercouri G. Kanatzidis 《Advanced functional materials》2018,28(31)
Sb‐doped and GeTe‐alloyed n‐type thermoelectric materials that show an excellent figure of merit ZT in the intermediate temperature range (400–800 K) are reported. The synergistic effect of favorable changes to the band structure resulting in high Seebeck coefficient and enhanced phonon scattering by point defects and nanoscale precipitates resulting in reduction of thermal conductivity are demonstrated. The samples can be tuned as single‐phase solid solution (SS) or two‐phase system with nanoscale precipitates (Nano) based on the annealing processes. The GeTe alloying results in band structure modification by widening the bandgap and increasing the density‐of‐states effective mass of PbTe, resulting in significantly enhanced Seebeck coefficients. The nanoscale precipitates can improve the power factor in the low temperature range and further reduce the lattice thermal conductivity (κlat). Specifically, the Seebeck coefficient of Pb0.988Sb0.012Te–13%GeTe–Nano approaches ?280 µV K?1 at 673 K with a low κlat of 0.56 W m?1 K?1 at 573 K. Consequently, a peak ZT value of 1.38 is achieved at 623 K. Moreover, a high average ZTavg value of ≈1.04 is obtained in the temperature range from 300 to 773 K for n‐type Pb0.988Sb0.012Te–13%GeTe–Nano. 相似文献
18.
19.
Lon E. Bell 《Journal of Electronic Materials》2009,38(7):1344-1349
The time it takes for new thermoelectric materials to make the transition from first announcement in peer-reviewed publications to commercialization is undesirably long. As a result, universities, laboratories, government agencies, commercial users, and venture funding providers throughout the world have not supported research in the field to the level that would be expected for such an otherwise promising technology. This delay also has led to some misdirection of research efforts and a lack of availability of dependable long-term sponsorship commitments to research in the field. From the perspective of commercial users, this presentation discusses the challenges that the thermoelectric material research community faces in creating materials of commercial value. These challenges are broken down into objectives for both the traditional research activities related to improving ZT and those efforts needed to satisfy other, less recognized requirements which, if unaddressed, can significantly impede or even prevent commercialization. The ZT thresholds that enable much larger markets are presented for power generation, cooling, heating, and temperature control materials. Other important considerations, including semiconductor to metal interface (metallization) properties, material stability and constituent requirements, and costs and environmental-impact-related requirements are discussed. At the system level, factors that impede material development are identified, including challenges arising from a lack of property measurement repeatability among different organizations. Approaches and results are compared with that of the more heavily funded and rapidly developing photovoltaic field. The presentation concludes with recommendations for measures to accelerate thermoelectric material commercialization. International Conference on Thermoelectrics (August 3–7, 2008, Corvallis, Oregon, USA). 相似文献
20.
通过取点法得到了由Ingot法、BM法、S-MS法和Te-MS法制备的四种新型p型热电材料(Bi0.5Sb1.5)Te3的变物性参数拟合公式,分析了温度对不同方法制备的热电材料的影响,得到了热电材料无量纲优值与绝对温度的关系曲线.从热力学方面研究了制备工艺对基于新型热电材料的热电制冷器最大制冷系数的影响.结果表明:由Te-MS法制备的新型p型热电材料(Bi0.5Sb1.5)Te3具有最大的优值系数,基于该材料的热电制冷器最大制冷系数可达2.49,较其他三种方法制备的热电材料分别提升了 34.59%,37.57%和25.76%. 相似文献