首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bubble column is widely used in both industrial and environmental applications. In this study, we examine the flow dynamics and stability of a bubble column driven by a point air source centrally mounted at the bottom using Phase Doppler anemometry (PDA). The model cylindrical bubble column had an inner diameter of 152 mm and was filled with the liquid to about 1 m height, above the point air source, which was made of a 30-mm diameter perforated air stone. The bubble diameters were within the range of 400–1300 μm. A customized setup was developed for accurate PDA measurements of the two phases, and detailed turbulent characteristics of the liquid phase velocity, bubble diameter, bubble velocity and the slip velocity were collected throughout the column. The comprehensiveness of the data set enabled a close examination of the hydrodynamic stability inside the column. Measurements were taken at three different air rates, namely 0.13, 0.25 and 0.38 L/min (corresponding to average gas volume fractions of 0.0065, 0.0138 and 0.0197, respectively). The results illustrated a large-scale coherent liquid circulation pattern inside the column. The circulation pattern in the upper column was relatively steady, while the pattern in the lower column was strongly unsteady with the probability density functions (pdf) for both the liquid and bubble velocities showing distinct twin peaks. An analysis based on the determination of the bubble drag forces and transversal lift forces is performed by decomposing the twin-peaked pdfs into two separated Gaussian distributions, one for the upward flow due to the bubble rises and the other for the downward flow due to circulation. Through the decomposition, a stability criterion can then be established by choosing the local bubble size as the representative length scale for the turbulent eddies inside the column. The analysis with the criterion illustrates why a steady circulation pattern was achieved in the upper column, and at the same time shows that the instability at the bottom column was induced by the low frequency meandering of the bubble swarm.  相似文献   

2.
An in‐depth numerical study has been carried out to investigate a high‐pressure commercial scale (2–8 m diameter, 30–40 m in height) slurry bubble column reactor. Typical superficial gas velocities are in the range of 0.5–3 m/s, and overall vapor holdups are in the range of 0.45–0.85. The study revealed that steady compartmental reaction models do not match plant data when reaction time constants are fast. Also, off‐the‐shelf commercial computational fluid dynamics codes do not produce useful information about a reactive column of this scale without first validating the model using data “anchors” from full‐scale operational columns. Important measures include both transient and time‐averaged profiles, integrals, and extrema of vapor holdup and reactants. Reactor designs based on this study show both improved productivity and product quality, allowing record production from existing plants along with substantial capital scope reduction for new plants. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

3.
Gas–aqueous liquid–oil three‐phase flow was generated in a microchannel with a double T‐junction. Under the squeezing of the dispersed aqueous phase at the second T‐junction (T2), the splitting of bubbles generated from the first T‐junction (T1) was investigated. During the bubble splitting process, the upstream gas–oil two‐phase flow and the aqueous phase flow at T2 fluctuate in opposite phases, resulting in either independent or synchronous relationship between the instantaneous downstream and upstream bubble velocities depending on the operating conditions. Compared with two‐phase flow, the modified capillary number and the ratio of the upstream velocity to the aqueous phase velocity were introduced to predict the bubble breakup time. The critical bubble breakup length and size laws of daughter bubbles/slugs were thereby proposed. These results provide an important guideline for designing microchannel structures for a precise manipulation of gas–liquid–liquid three‐phase flow which finds potential applications among others in chemical synthesis. © 2017 American Institute of Chemical Engineers AIChE J, 63: 376–388, 2018  相似文献   

4.
CFD simulations have been carried out in a full three‐dimensional, unsteady, Eulerian framework to simulate hydrodynamic/thermal coupling in a bubble column with internals. A first part of the study, dedicated to the hydrodynamic/thermal coupling in liquid single‐phase flows, showed that assuming constant wall temperature on the internals constitutes a reasonable approximation in lieu of comprehensive simulations encompassing shell flow and coolant flow together. A second part dealing with the hydrodynamics of gas–liquid flows in a bubble column with internals showed that a RNG k–ε turbulence model formulation accounting for gas‐induced turbulence was a relevant choice. The last part used these conclusions to build a hydrodynamic/thermal coupling model of a gas–liquid flow in a bubble column with internals. With a per‐phase RNG k–ε turbulence model and assuming constant wall temperature, it was possible to simulate heat transfer phenomena consistent with experimentally measured heat transfer coefficients. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

5.
Bubble breakup at a microfluidic T‐junction by taking into consideration the hydrodynamic feedback at the downstream channels is presented. Experiments are conducted in square microchannels with 400 μm in width. The splitting ratio of the bubble size in the bifurcations varies nonmonotonically with the flow rate ratio of gas/liquid phases, and it is also affected by the liquid viscosity. A critical size of the mother bubble determines the variation trend of the splitting ratio of bubble size with flow rates of both phases and the liquid viscosity, which is related to the different breakup mechanisms for long and short bubbles at the junction and the different additional resistances induced by long and short bubbles in downstream channels. A theoretical model is proposed to predict the tailoring size of bubbles at the T‐junction by taking into account of the additional resistance in the presence of bubbles in downstream channels. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1920–1929, 2014  相似文献   

6.
The axial dispersion model has been commonly used to describe gas phase flow in bubble columns. Scatter in dispersion coefficients reported to date may be a result of the misuse of the axial dispersion model when a convective model would be more appropriate. Using simple tests with radioactive tracer response curve moments, convective and dispersive behaviours are differentiated. A convective model is presented. The model fits both tracer response curves and mean gas velocity well in both the bubbly and churn turbulent flow regimes, and may be used as a technique to calculate bubble rise velocity distributions.  相似文献   

7.
The hydrodynamics of countercurrent air/water flow in a 5 cm diameter reciprocating plate bubble column have been studied; the plates contained 14 mm diameter perforations and had a fractional open area of 0.57. The ranges of superficial velocities of air and water were respectively 0-0.99 cm/s and 0-3.95 cm/s. The stroke was in most cases 4.5 cm and the reciprocation frequency was in the range 0–5 Hz. The pressure drops were measured in the absence of reciprocation for single phase and two phase flow conditions. Pressure fluctuations and time-averaged pressure drops were measured with plate reciprocation under single and two-phase conditions. The results were described in terms of the simple quasi-steady state model; the effective orifice coefficients of the perforations were within the range 0.4 to 0.97 depending on the reciprocation conditions. The Sauter mean diameters of the bubbles decreased with agitation; they were about twice the values predicted from an earlier correlation developed for liquid-liquid systems. The gas holdups were also substantially greater than predicted from correlations based on liquid-liquid systems. Both these effects were explained as due to the tendency for bubbles to cluster in the plate region.  相似文献   

8.
Coincident (simultaneous) three‐component particle velocity measurements performed using two laser Doppler anemometry probes at the outlet section of a 9 m high cylindrical riser are for the first time presented for dilute flow conditions. Near the blinded extension of the T‐outlet a solids vortex is formed. Particle downflow along the riser wall opposite the outlet tube is observed, which is restricted to higher riser heights at higher gas flow rates. Increased velocity fluctuations are observed in the solids vortex and downflow region as well as at heights corresponding to the outlet tube. Contrary to the rest of the riser, in the downflow region time and ensemble velocity averages are not equal. Given the local bending of the streamlines, axial momentum transforms to radial and azimuthal momentum giving rise to the corresponding shear stresses. Turbulence intensity values indicate the edges of the downflow region. © 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3575–3584, 2016  相似文献   

9.
10.
Numerical Eulerian-Eulerian simulations of the unsteady gas-liquid flow in a centrally aerated two-dimensional bubble column were carried out in order to understand the effect of different formulations of the lift force coefficient (CL) on the computational results. Three different values of the superficial gas velocity (UG=2.4, 12.0 and 21.3 mm s−1) that ensure the existence of different flow regimes were experimentally and computationally studied. The validation of the simulated results was based on visual observations and measurements of the global gas hold-up (εG) and the plume oscillation period (POP). The results presented reveal that, at UG=12.0 and 21.3 mm s−1, using CL<0 results in under- and over-estimation of the εG and POP, respectively. On the other hand, taking CL>0 does not affect the POP while it leads to increasingly higher εG values, which are different from those experimentally reported. At UG=2.4 mm s−1, the effect of the lift force is not so evident, although it slightly improves the prediction of experimental values. Particularly interesting is the case of CL>0.4 at UG=21.3 mm s−1, producing a non-symmetric bubble plume oscillation. Since using Tomiyama's lift coefficient correlation does not improve the results, including the lift force into the simulation of bubble plumes is not recommended.  相似文献   

11.
Experiments conducted in 0.15 m diameter bubble columns using water and non-aqueous liquids have shown that the gas velocity at which transition from the bubbly flow to the churn-turbulent flow regime occurs is a function of gas density. The transition velocity increased with increasing gas density. The direct effect of gas density on gas holdup in the bubbly flow regime is small with only a slight increase in holdup being observed at higher densities (?G α ρg 0.04). In the churnturbulent region a much greater effect of gas density on gas holdup was observed. These differences were found to be a direct function of the differences in holdup values at the transition points. Gas holdup was found to be a function of the gas phase momentum. In the bubbly flow regime holdup was directly proportional to momentum while in the churn-turbulent regime holdup was proportional to momentum to the one third power. Reasons for this behaviour are discussed, as well as the implied effects on liquid mixing in bubble column slurry reactors. The effects of gas density may offer an explanation for some apparently anomalous published results.  相似文献   

12.
The effects of liquid phase rheology on the local hydrodynamics of bubble column reactors operating with non‐Newtonian liquids are investigated. Local bubble properties, including bubble frequency, bubble chord length, and bubble rise velocity, are measured by placing two in‐house made optical fiber probes at various locations within a bubble column reactor operating with different non‐Newtonian liquids. It was found that the presence of elasticity can noticeably increase the bubble frequency but decreases the bubble chord length and its rise velocity. The radial profiles of bubble frequency, bubble chord length, and bubble rise velocity are shown to be relatively flat at low superficial gas velocity while they become parabolic at high superficial gas velocity. Moreover, the bubble size and gas holdup are correlated with respect to dimensionless groups by considering the ratio between dynamic moduli of viscoelastic liquids. The novel proposed correlations are capable of predicting the experimental data of bubble size and gas holdup within a mean absolute percentage error of 9.3% and 10%, respectively. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1382–1396, 2016  相似文献   

13.
The double T‐junction microchannel is a classical microstructured chemical device used to generate gas/liquid/liquid three‐phase microflows. An experimental study that focused on the three‐phase flow phenomena and bubble/droplet generation rules in a double T‐junction microchannel was introduced. Based on the published knowledge of gas/liquid and liquid/liquid two‐phase microflows, new flow patterns were carefully defined: bubble cutting flow, spontaneous break‐up and bubble cutting coupling flow, and bubble/droplet alternate break‐up flow. According to the classical correlations of bubble and droplet volumes and their generation frequency ratio, the operating criteria for creating different three‐phase flow patterns were established and a model for the dimensionless average bubble and droplet volumes in the three‐phase microflows was developed. These various three‐phase microflows have great application potential in material science and flow chemistry synthesis. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1722–1734, 2015  相似文献   

14.
运用气泡多相流MUSIG(multiple-size-group)数学模型,以100 m3的传统柠檬酸发酵罐内的搅拌、气泡运动过程为研究对象,针对直径为20、5、0.5 mm的3种典型气泡尺寸组,采用CFD技术数值模拟出罐内的湍流速度场、气泡体积组分空间分布场.探讨了不同的通气量对气泡体积分布的影响规律性,分析了发酵罐内溶氧浓度低的主要原因,为认识与改善发酵罐内的溶氧率提供了理论依据.  相似文献   

15.
In this article we introduce a temporal histogram‐based method for digital image analysis (DIA) of pseudo‐2D fluidized bed risers. This method enables an accurate whole field measurement of the solids volume fraction in lab‐scale pseudo‐2D riser flows by successfully removing image imperfections and merely accounting for the particles’ intensity. Moreover, the new correlation between normalized intensity and solids volume fraction that is proposed in this work enables a quantitative approach for solids concentration measurements by DIA techniques. This technique can be easily adjusted with experimental settings and shows a great stability against adverse imaging conditions. The combination of this parameter‐free method with particle image velocimetry under riser flow conditions has been successfully applied, enabling the experimental acquisition of full field hydrodynamic data. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2681–2698, 2016  相似文献   

16.
    
The effects of air‐flow pulsation and water and air flowrates on the hydrodynamics of liquid—gas and three‐phase fluidized beds containing 3‐mm glass beads have been studied in a 90‐mm i.d. column. Under steady‐flow conditions, both types of bed contained a relatively large number of small bubbles. With a pulsing air flow, however, a smaller number of much larger bubbles or slugs were formed. This was attributed to different mechanisms of bubble formation at the distributor. Variations in phase holdup were explained in terms of the effects of the operating parameters on the bubble characteristics.  相似文献   

17.
The hydrodynamics of an airlift-loop reactor (ALR) and a bubble column (BC) were studied in the same reactor unit. When the liquid circulation in the ALR was impeded gradually in order to obtain a BC mode of operation, there was a transition flow regime inbetween that of the ALR-type flow and the BC-type flow. In the BC the heterogeneous flow was represented by an instationary circulatory flow pattern and characterized by a liquid circulation velocity. The liquid flow in the ALR was represented by a drift-flux model. In the transition flow regime, hydrodynamic calculations based on the plug-flow behavior of an ALR appeared to be valid up to a certain defined value of the total gas-liquid flow rate. To distinguish between BC and ALR flow characteristics, a simple criterion is proposed, qualifying that the distinction between both flow patterns is determined by the superficial liquid velocity and the liquid circulation velocity. If the latter velocity exceeds the superficial liquid velocity a hydrodynamic transition will occur from a uniform ALR type of flow to a heterogeneous BC type of flow. The criterion coincides with an empirical power law function in which the liquid velocity is given as a function of the gas velocity. The values of the power-law coefficients depended on the characteristics of the two-phase flow. The change in value cohered with the onset of a change in the flow pattern.  相似文献   

18.
In this article, results of detailed numerical simulations are reported meant to provide a closure relation for the drag force acting on bubbles rising in a dense swarm. The formation of clusters of bubbles in a periodic domain and the effect thereof on the rise velocity and effective drag coefficient on the bubbles are studied. Using smaller bubble sizes than presented in our earlier work, we are also able to refine our correlation for the drag coefficient acting on bubbles rising in a swarm, such that it is applicable for a large range of bubble sizes. The simulations are performed with an advanced Front‐Tracking model in which Lagrangian marker points are used to track the gas–liquid interface, while accounting for surface tension and substantial interface deformation. Simulations were performed using periodic domains to simulate rising air bubbles in water from 1.0 mm up to 6.0 mm in diameter. The effect of liquid phase viscosity was also studied to extend the range of validity of the drag correlation. For the 1.0 and 1.5 mm cases, strong horizontal clustering effects are observed. Especially, at high gas fractions, the bubbles tend to form rigid horizontal arrays, which have been shown to strongly increase the drag force acting on the bubbles in the cluster. For viscous liquids, the tendency to form horizontal clusters is lower, and even vertical clustering is observed. The bubble slip velocity was compared with the experimental results of Zenit et al., which agree very well taking into account the differences between simulations and experiments. Based on our simulations, a new drag correlation was proposed, taking into account Eötvös numbers ranging from 0.13 to 4.9, and Morton numbers in the range 3.8 ≤ ? log Mo < 6.6, and gas hold‐ups up to 40% (30% for Eo < 0.3). At lower values for ?log Mo, the Reynolds number drops to the order of unity, and the correlation overpredicts the drag coefficient, which defines the range of applicability of the currently proposed drag correlation. The correlation itself describes a linear increase of the normalized drag coefficient as a function of the gas hold‐up. The strength of linear increase is stronger at lower Eötvös numbers. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1791–1800, 2013  相似文献   

19.
Mixing behavior of the two phase air-water turbulent flow in a jet bubble column is examined. The time evolution of the mixing behavior of a liquid tracer in a turbulent air-water flow within a jet bubble column is predicted using a model based on the fundamental governing equations of fluid motion. The predictions of the model are compared with experimental measurements. Measured residence time distributions (RTD) of the liquid tracer within the cone agree well with the predicted values given by the model. For the range of parameters considered in the study, lack of radial mixing and large axial mixing are evident within the cone of the jet bubble column. Use of fundamental mathematical models for the study of hydrodynamics in a two-phase conventional bubble column has been reported earlier (Torvik, 1990; Jakobsen et al., 1993). The present paper extends the use of such models to predict the mixing characteristics in a jet bubble column.  相似文献   

20.
Characteristics of liquid–liquid slug flow are investigated in a microchannel with focus on the leakage flow that bypasses droplets through channel gutters. The results show that the leakage flow rate varies in a range of 10.7–53.5% and 8.3–30.9% of the feed flow rate, during the droplet formation (i.e., at T‐junction) and downstream flow (i.e., in the main channel), respectively, which highly depends on Ca number and wetting condition. Empirical correlations are proposed to predict them for perfectly and partially wetting conditions. Leakage flow contribution is further used to improve the Garstecki model for size scaling in order to extend its suitability for both squeezing and shearing regimes. The instantaneous flow rates of the immiscible phases are found to fluctuate periodically with the formation cycles, but in opposite behavior. The effect of the presence of leakage flow on such fluctuation are investigated and compared with gas–liquid systems. © 2017 American Institute of Chemical Engineers AIChE J, 63: 346–357, 2018  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号