首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The interfacial atomic and electronic structures, charge transfer processes, and interface engineering in perovskite solar cells are discussed in this review. An effective heterojunction is found to exist at the window/perovskite absorber interface, contributing to the relatively fast extraction of free electrons. Moreover, the high photovoltage in this cell can be attributed to slow interfacial charge recombination due to the outstanding material and interfacial electronic properties. However, some fundamental questions including the interfacial atomic and electronic structures and the interface stability need to be further clarified. Designing and engineering the interfaces are also important for the next‐stage development of this cell.  相似文献   

3.
4.
5.
The recently emerged integrated perovskite/bulk-heterojunction (BHJ) organic solar cells (IPOSCs) without any recombination layers have generated wide attention. This type of device structure can take the advantages of tandem cells using both perovskite solar and near-infrared (NIR) BHJ organic solar materials for wide-range sunlight absorption and the simple fabrication of single junction cells, as the low bandgap BHJ layer can provide additional light harvesting in the NIR region and the high open-circuit voltage can be maintained at the same time. This progress report highlights the recent developments in such IPOSCs and the possible challenges ahead. In addition, the recent development of perovskite solar cells and NIR organic solar cells is also covered to fully underline the importance and potential of IPOSCs.  相似文献   

6.
Ternary architecture is one of the most effective strategies to boost the power conversion efficiency (PCE) of organic solar cells (OSCs). Here, an OSC with a ternary architecture featuring a highly crystalline molecular donor DRTB-T-C4 as a third component to the host binary system consisting of a polymer donor PM6 and a nonfullerene acceptor Y6 is reported. The third component is used to achieve enhanced and balanced charge transport, contributing to an improved fill factor (FF) of 0.813 and yielding an impressive PCE of 17.13%. The heterojunctions are designed using so-called pinning energies to promote exciton separation and reduce recombination loss. In addition, the preferential location of DRTB-T-C4 at the interface between PM6 and Y6 plays an important role in optimizing the morphology of the active layer.  相似文献   

7.
黄娟茹  谭欣  于涛  赵林  吴天彧 《材料导报》2011,25(13):134-141
在概述染料敏化太阳能电池工作原理基础上,着重分析电池光阳极TiO2薄膜的特性,并指出该薄膜在电池中所起的作用:负载染料、收集光生电子、分离电荷和传输光生电子;继而从表面修饰、离子掺杂、量子点敏化、制备复合薄膜、设计微观有序空间结构、设计核壳结构以及多手段共改性等方面对TiO2薄膜改性手段进行综述,并详细分析改性手段优化染料敏化太阳能电池性能的原因;最后,提出应把优化光阳极TiO2薄膜制备工艺及探讨薄膜接触面工作机理等作为今后的研究重点。  相似文献   

8.
9.
10.
Currently, blade-coated perovskite solar cells (PSCs) with high power conversion efficiencies (PCEs), that is, greater than 20%, normally employ methylammonium lead tri-iodide with a sub-optimal bandgap. Alloyed perovskites with formamidinium (FA) cation have narrower bandgap and thus enhance device photocurrent. However, FA-alloyed perovskites show low phase stability and high moisture sensitivity. Here, it is reported that incorporating 0.83 molar percent organic halide salts (OHs) into perovskite inks enables phase-pure, highly crystalline FA-alloyed perovskites with extraordinary optoelectronic properties. The OH molecules modulate the crystal growth, enhance the phase stability, passivate ionic defects at the surface and/or grain boundaries, and enhance the moisture stability of the perovskite film. A high efficiency of 22.0% under 1 sun illumination for blade-coated PSCs is demonstrated with an open-circuit voltage of 1.18 V, corresponding to a very small voltage deficit of 0.33 V, and significantly improved operational stability with 96% of the initial efficiency retained under one sun illumination for 500 h.  相似文献   

11.
量子点敏化太阳能电池(Quantum Dot-Sensitized Solar cells, QDSCs)制备工艺简单, 制造成本低廉, 是一种有希望的新型太阳能电池。QDSCs利用量子点具有光谱吸收强、尺寸可调和多激子效应等优点, 能够提高其光电转换效率; 同时, 利用无机量子点替代染料作为敏化剂, 能够解决染料敏化太阳能电池(DSCs)的稳定性问题。但是, QDSCs光电转换效率较低是制约其应用的主要问题。近年来, 通过改变和调控对电极的材料和电子特性提高QDSCs的光电效率的方法受到了广泛关注。本文综述了QDSCs对电极材料的制备方法、微观形貌和晶体结构; 重点分析了金属化合物、复合材料、杂化材料、多元金属硫族化合物、导电聚合物和碳材料对电极对量子点敏化太阳能电池的电荷转移阻抗、光电性能等参数的影响; 并分析影响其电催化活性和电子传输性能的主要因素。最后, 提出通过表面修饰、复合和杂化等方法构筑新型对电极材料, 进而改善和提高QDSCs转换效率和稳定性, 是今后的研究重点和研究方向。  相似文献   

12.
13.
14.
All-solution-processed organic solar cells (from the bottom substrate to the top electrode) are highly desirable for low-cost and ubiquitous applications. However, it is still challenging to fabricate efficient all-solution-processed organic solar cells with a high-performance nonfullerene (NF) active layer. Issues of charge extraction and wetting are persistent at the interface between the nonfullerene active layer and the printable top electrode (PEDOT:PSS). In this work, efficient all-solution-processed NF organic solar cells (from the bottom substrate to the top electrode) are reported via the adoption of a layer of hydrogen molybdenum bronze (HXMoO3) between the active layer and the PEDOT:PSS. The dual functions of HXMoO3 include: 1) its deep Fermi level of −5.44 eV can effectively extract holes from the active layer; and 2) the wetting issues of the PEDOT:PSS on the hydrophobic surface of the NF active layer can be solved. Importantly, fine control of the HXMoO3 composition during the synthesis is critical in obtaining processing orthogonality between HXMoO3 and the PEDOT:PSS. Flexible all-solution-processed NF organic solar cells with power conversion efficiencies of 11.9% and 10.3% are obtained for solar cells with an area of 0.04 and 1 cm2, respectively.  相似文献   

15.
Solution processable semiconductors like organics and emerging lead halide perovskites (LHPs) are ideal candidates for photovoltaics combining high performance and flexibility with reduced manufacturing cost. Moreover, the study of hybrid semiconductors would lead to advanced structures and deep understanding that will propel this field even further. Herein, a novel device architecture involving block copolymer/perovskite hybrid bulk heterointerfaces is investigated, such a modification could enhance light absorption, create an energy level cascade, and provides a thin hydrophobic layer, thus enabling enhanced carrier generation, promoting energy transfer and preventing moisture invasion, respectively. The resulting hybrid block copolymer/perovskite solar cell exhibits a champion efficiency of 24.07% for 0.0725 cm2-sized devices and 21.44% for 1 cm2-sized devices, respectively, together with enhanced stability, which is among the highest reports of organic/perovskite hybrid devices. More importantly, this approach has been effectively extended to other LHPs with different chemical compositions like MAPbI3 and CsPbI3, which may shed light on the design of highly efficient block copolymer/perovskite hybrid materials and architectures that would overcome current limitations for realistic application exploration.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号