首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
A poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) hydrogel is prepared by thermal treatment of a commercial PEDOT:PSS (PH1000) suspension in 0.1 mol L?1 sulfuric acid followed by partially removing its PSS component with concentrated sulfuric acid. This hydrogel has a low solid content of 4% (by weight) and an extremely high conductivity of 880 S m?1. It can be fabricated into different shapes such as films, fibers, and columns with arbitrary sizes for practical applications. A highly conductive and mechanically strong porous fiber is prepared by drying PEDOT:PSS hydrogel fiber to fabricate a current‐collector‐free solid‐state flexible supercapacitor. This fiber supercapacitor delivers a volumetric capacitance as high as 202 F cm?3 at 0.54 A cm?3 with an extraordinary high‐rate performance. It also shows excellent electrochemical stability and high flexibility, promising for the application as wearable energy‐storage devices.  相似文献   

4.
We develop a biomaterial based on protein–polymer conjugates where poly(ethylene glycol) (PEG) polymer chains are covalently linked to multiple thiols on denatured fibrinogen. We hypothesize that conjugation of large diacrylate‐functionalized linear PEG chains to fibrinogen could govern the molecular architecture of the polymer network via a unique protein–polymer interaction. The hypothesis is explored using carefully designed shear rheometry and swelling experiments of the hydrogels and their precursor PEG/fibrinogen conjugate solutions. The physical properties of non‐cross‐linked and UV cross‐linked PEGylated fibrinogen having PEG molecular weights ranging from 10 to 20 kDa are specifically investigated. Attaching multiple hydrophilic, functionalized PEG chains to the denatured fibrinogen solubilizes the denatured protein and enables a rapid free‐radical polymerization cross‐linking reaction in the hydrogel precursor solution. As expected, the conjugated protein‐polymer macromolecular complexes act to mediate the interactions between radicals and unsaturated bonds during the free‐radical polymerization reaction, when compared to control PEG hydrogels. Accordingly, the cross‐linking kinetics and stiffness of the cross‐linked hydrogel are highly influenced by the protein–polymer conjugate architecture and molecular entanglements arising from hydrophobic/hydrophilic interactions and steric hindrances. The proteolytic degradation products of the protein–polymer conjugates proves to be were different from those of the non‐conjugated denatured protein degradation products, indicating that steric hindrances may alter the proteolytic susceptibility of the PEG–protein adduct. A more complete understanding of the molecular complexities associated with this type of protein‐polymer conjugation can help to identify the full potential of a biomaterial that combines the advantages of synthetic polymers and bioactive proteins.  相似文献   

5.
Ammonia‐scavenging transmembrane pH‐gradient poly(styrene)‐b‐poly(ethylene oxide) polymersomes are investigated for the oral treatment and diagnosis of hyperammonemia, a condition associated with serious neurologic complications in patients with liver disease as well as in infants with urea cycle disorders. While these polymersomes are highly stable in simulated intestinal fluids at extreme bile salt and osmolality conditions, they unexpectedly do not reduce plasmatic ammonia levels in cirrhotic rats after oral dosing. Incubation in dietary fiber hydrogels mimicking the colonic environment suggests that the vesicles are probably destabilized during the dehydration of the intestinal chyme. The findings question the relevance of commonly used simulated intestinal fluids for studying vesicular stability. With the encapsulation of a pH‐sensitive dye in the polymersome core, the local pH increase upon ammonia influx could be exploited to assess the ammonia concentration in the plasma of healthy and cirrhotic rats as well as in other fluids. Due to its high sensitivity and selectivity, this polymersome‐based assay could prove useful in the monitoring of hyperammonemic patients and in other applications such as drug screening tests.  相似文献   

6.
7.
8.
9.
10.
11.
In drug delivery, the poor tumor perfusion results in disappointing therapeutic efficacy. Nanomedicines for photodynamic therapy (PDT) greatly need deep tumor penetration due to short lifespan and weak diffusion of the cytotoxic reactive oxygen species (ROS). The damage of only shallow cells can easily cause invasiveness and metastasis. Moreover, even if the nanomedicines enter into deeper lesion, the effectiveness of PDT is limited due to the hypoxic microenvironment. Here, a deep penetrating and oxygen self‐sufficient PDT nanoparticle is developed for balanced ROS distribution within tumor and efficient cancer therapy. The designed nanoparticles (CNPs/IP) are doubly emulsified (W/O/W) from poly(ethylene glycol)‐poly(ε‐caprolactone) copolymers doped with photosensitizer IR780 in the O layer and oxygen depot perfluorooctyl bromide (PFOB) inside the core, and functionalized with the tumor penetrating peptide Cys‐Arg‐Gly‐Asp‐Lys (CRGDK). The CRGDK modification significantly improves penetration depth of CNPs/IP and makes the CNPs/IP arrive at both the periphery and hypoxic interior of tumors where the PFOB releases oxygen, effectively alleviating hypoxia and guaranteeing efficient PDT performance. The improved intratumoral distribution of photosensitizer and adequate oxygen supply augment the sensitivity of tumor cells to PDT and significantly improve PDT efficiency. Such a nanosystem provides a potential platform for improved therapeutic index in anticancer therapy.  相似文献   

12.
All‐polymer solar cells (all‐PSCs) have attracted immense attention in recent years due to their advantages of tunable absorption spectra and electronic energy levels for both donor and acceptor polymers, as well as their superior thermal and mechanical stability. The exploration of the novel n‐type conjugated polymers (CPs), especially based on aromatic diimide (ADI), plays a vital role in the further improvement of power conversion efficiency (PCE) of all‐PSCs. Here, recent progress in structure modification of ADIs including naphthalene diimide (NDI), perylene diimide (PDI), and corresponding derivatives is reviewed, and the structure–property relationships of ADI‐based CPs are revealed.  相似文献   

13.
Polymer‐based electrolytes have attracted ever‐increasing attention for all‐solid‐state lithium (Li) metal batteries due to their ionic conductivity, flexibility, and easy assembling into batteries, and are expected to overcome safety issues by replacing flammable liquid electrolytes. However, it is still a critical challenge to effectively block Li dendrite growth and improve the long‐term cycling stability of all‐solid‐state batteries with polymer electrolytes. Here, the interface between novel poly(vinylidene difluoride) (PVDF)‐based solid electrolytes and the Li anode is explored via systematical experiments in combination with first‐principles calculations, and it is found that an in situ formed nanoscale interface layer with a stable and uniform mosaic structure can suppress Li dendrite growth. Unlike the typical short‐circuiting that often occurs in most studied poly(ethylene oxide) systems, this interface layer in the PVDF‐based system causes an open‐circuiting feature at high current density and thus avoids the risk of over‐current. The effective self‐suppression of the Li dendrite observed in the PVDF–LiN(SO2F)2 (LiFSI) system enables over 2000 h cycling of repeated Li plating–stripping at 0.1 mA cm?2 and excellent cycling performance in an all‐solid‐state LiCoO2||Li cell with almost no capacity fade after 200 cycles at 0.15 mA cm?2 at 25 °C. These findings will promote the development of safe all‐solid‐state Li metal batteries.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Because nanoparticles are finding uses in myriad biomedical applications, including the delivery of nucleic acids, a detailed knowledge of their interaction with the biological system is of utmost importance. Here the size‐dependent uptake of gold nanoparticles (AuNPs) (20, 30, 50 and 80 nm), coated with a layer‐by‐layer approach with nucleic acid and poly(ethylene imine) (PEI), into a variety of mammalian cell lines is studied. In contrast to other studies, the optimal particle diameter for cellular uptake is determined but also the number of therapeutic cargo molecules per cell. It is found that 20 nm AuNPs, with diameters of about 32 nm after the coating process and about 88 nm including the protein corona after incubation in cell culture medium, yield the highest number of nanoparticles and therapeutic DNA molecules per cell. Interestingly, PEI, which is known for its toxicity, can be applied at significantly higher concentrations than its IC50 value, most likely because it is tightly bound to the AuNP surface and/or covered by a protein corona. These results are important for the future design of nanomaterials for the delivery of nucleic acids in two ways. They demonstrate that changes in the nanoparticle size can lead to significant differences in the number of therapeutic molecules delivered per cell, and they reveal that the toxicity of polyelectrolytes can be modulated by an appropriate binding to the nanoparticle surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号