首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The first full‐color polymer organic light‐emitting diode (OLED) display is reported, fabricated by a direct photolithography process, that is, a process that allows direct structuring of the electroluminescent layer of the OLED by exposure to UV light. The required photosensitivity is introduced by attaching oxetane side groups to the backbone of red‐, green‐, and blue‐light‐emitting polymers. This allows for the use of photolithography to selectively crosslink thin films of these polymers. Hence the solution‐based process requires neither an additional etching step, as is the case for conventional photoresist lithography, nor does it rely on the use of prestructured substrates, which are required if ink‐jet printing is used to pixilate the emissive layer. The process allows for low‐cost display fabrication without sacrificing resolution: Structures with features in the range of 2 μm are obtained by patterning the emitting polymers via UV illumination through an ultrafine shadow mask. Compared to state‐of‐the‐art fluorescent OLEDs, the display prototype (pixel size 200 μm × 600 μm) presented here shows very good efficiency as well as good color saturation for all three colors. The application in solid‐state lighting is also possible: Pure white light [Commision Internationale de l'Éclairage (CIE) values of 0.33, 0.33 and color rendering index (CRI) of 76] is obtained at an efficiency of 5 cd A–1 by mixing the three colors in the appropriate ratio. For further enhancement of the device efficiency, an additional hole‐transport layer (HTL), which is also photo‐crosslinkable and therefore suitable to fabricate multilayer devices from solution, is embedded between the anode and the electroluminescent layer.  相似文献   

2.
The first high‐resolution full‐color OLED display based on a direct photolithographic process is presented by Meerholz and co‐workers on p. 191. The cover shows a schematic illustration of the fabrication process, a fluorescence microscope picture demonstrating the micrometer resolution capability of the process, and a picture of the first prototype displaying a test image. Electroluminescent polymers with photoresist‐like properties are the basis of the new process (chemical structure shown in the background). The first full‐color polymer organic light‐emitting diode (OLED) display is reported, fabricated by a direct photolithography process, that is, a process that allows direct structuring of the electroluminescent layer of the OLED by exposure to UV light. The required photosensitivity is introduced by attaching oxetane side groups to the backbone of red‐, green‐, and blue‐light‐emitting polymers. This allows for the use of photolithography to selectively crosslink thin films of these polymers. Hence the solution‐based process requires neither an additional etching step, as is the case for conventional photoresist lithography, nor does it rely on the use of prestructured substrates, which are required if ink‐jet printing is used to pixilate the emissive layer. The process allows for low‐cost display fabrication without sacrificing resolution: Structures with features in the range of 2 μm are obtained by patterning the emitting polymers via UV illumination through an ultrafine shadow mask. Compared to state‐of‐the‐art fluorescent OLEDs, the display prototype (pixel size 200 μm × 600 μm) presented here shows very good efficiency as well as good color saturation for all three colors. The application in solid‐state lighting is also possible: Pure white light [Commision Internationale de l'Éclairage (CIE) values of 0.33, 0.33 and color rendering index (CRI) of 76] is obtained at an efficiency of 5 cd A–1 by mixing the three colors in the appropriate ratio. For further enhancement of the device efficiency, an additional hole‐transport layer (HTL), which is also photo‐crosslinkable and therefore suitable to fabricate multilayer devices from solution, is embedded between the anode and the electroluminescent layer.  相似文献   

3.
Phosphorescent organic light emitting diodes (PHOLEDs) have undergone tremendous growth over the past two decades. Indeed, they are already prevalent in the form of mobile displays, and are expected to be used in large‐area flat panels recently. To become a viable technology for next generation solid‐state light source however, PHOLEDs face the challenge of achieving concurrently a high color rendering index (CRI) and a high efficiency at high luminance. To improve the CRI of a standard three color white PHOLED, one can use a greenish‐yellow emitter to replace the green emitter such that the gap in emission wavelength between standard green and red emitters is eliminated. However, there are relatively few studies on greenish‐yellow emitters for PHOLEDs, and as a result, the performance of greenish‐yellow PHOLEDs is significantly inferior to those emitting in the three primary colors, which are driven strongly by the display industry. Herein, a newly synthesized greenish‐yellow emitter is synthesized and a novel device concept is introduced featuring interzone exciton transfer to considerably enhance the device efficiency. In particular, high external quantum efficiencies (current efficiencies) of 21.5% (77.4 cd/A) and 20.2% (72.8 cd/A) at a luminance of 1000 cd/m2 and 5000 cd/m2, respectively, have been achieved. These efficiencies are the highest reported to date for greenish‐yellow emitting PHOLEDs. A model for this unique design is also proposed. This design could potentially be applied to enhance the efficiency of even longer wavelength yellow and red emitters, thereby paving the way for a new avenue of tandem white PHOLEDs for solid‐state lighting.  相似文献   

4.
Switching and control of efficient red, green, and blue active matrix organic light‐emitting devices (AMOLEDs) by printed organic thin‐film electrochemical transistors (OETs) are demonstrated. These all‐organic pixels are characterized by high luminance at low operating voltages and by extremely small transistor dimensions with respect to the OLED active area. A maximum brightness of ≈900 cd m?2 is achieved at diode supply voltages near 4 V and pixel selector (gate) voltages below 1 V. The ratio of OLED to OET area is greater than 100:1 and the pixels may be switched at rates up to 100 Hz. Essential to this demonstration are the use of a high capacitance electrolyte as the gate dielectric layer in the OETs, which affords extremely large transistor transconductances, and novel graded emissive layer (G‐EML) OLED architectures that exhibit low turn‐on voltages and high luminescence efficiency. Collectively, these results suggest that printed OETs, combined with efficient, low voltage OLEDs, could be employed in the fabrication of flexible full‐color AMOLED displays.  相似文献   

5.
Much effort has gone into research on light‐emitting electrochemical cells (LECs) in recent years. LECs have a simple structure and can be fabricated using low‐cost methods and materials and are seen as the next big thing in organic devices after organic light‐emitting diodes (OLEDs). In particular, expectations are high, in that LECs could be used to create a new generation of low‐cost lighting systems, making use of their surface‐emitting property. Getting such systems to the market will require the development of highly efficient white light‐emitting LECs. A variety of methods for obtaining white emission based on the light‐mixing principle have been explored. Among these, the use of exciplexes formed between donor‐type and acceptor‐type molecules is one of the more promising. Exciplex emission is broad in spectrum and can be used to produce LECs with a high color rendering index. In this progress report, the recent developments in research into LECs designed to utilize exciplex emission and present technologies used to obtain white emission are discussed. The potential for using thermally activated delayed fluorescence to improve efficiency is described. Finally, the latest developments in optical engineering techniques for LECs are also discussed.  相似文献   

6.
White organic light‐emitting diodes (WOLEDs) are currently under intensive research and development worldwide as a new generation light source to replace problematic incandescent bulbs and fluorescent tubes. One of the major challenges facing WOLEDs has been to achieve high energy efficiency and high color rendering index simultaneously to make the technology competitive against other alternative technologies such as inorganic LEDs. Here, an all‐phosphor, four‐color WOLEDs is presented, employing a novel device design principle utilizing molecular energy transfer or, specifically, triplet exciton conversion within common organic layers in a cascaded emissive zone configuration to achieve exceptional performance: an 24.5% external quantum efficiency (EQE) at 1000 cd/m2 with a color rendering index (CRI) of 81, and an EQE at 5000 cd/m2 of 20.4% with a CRI of 85, using standard phosphors. The EQEs achieved are the highest reported to date among WOLEDs of single or multiple emitters possessing such high CRI, which represents a significant step towards the realization of WOLEDs in solid‐state lighting.  相似文献   

7.
A series of blue (B), green (G) and red (R) light‐emitting, 9,9‐bis(4‐(2‐ethyl‐hexyloxy)phenyl)fluorene (PPF) based polymers containing a dibenzothiophene‐S,S‐dioxide (SO) unit (PPF‐SO polymer), with an additional benzothiadiazole (BT) unit (PPF‐SO‐BT polymer) or a 4,7‐di(4‐hexylthien‐2‐yl)‐benzothiadiazole (DHTBT) unit (PPF‐SO‐DHTBT polymer) are synthesized. These polymers exhibit high fluorescence yields and good thermal stability. Light‐emitting diodes (LEDs) using PPF‐SO25, PPF‐SO15‐BT1, and PPF‐SO15‐DHTBT1 as emission polymers have maximum efficiencies LEmax = 7.0, 17.6 and 6.1 cd A?1 with CIE coordinates (0.15, 0.17), (0.37, 0.56) and (0.62, 0.36), respectively. 1D distributed feedback lasers using PPF‐SO30 as the gain medium are demonstrated, with a wavelength tuning range 467 to 487 nm and low pump energy thresholds (≥18 nJ). Blending different ratios of B (PPF‐SO), G (PPF‐SO‐BT) and R (PPF‐SO‐DHTBT) polymers allows highly efficient white polymer light‐emitting diodes (WPLEDs) to be realized. The optimized devices have an attractive color temperature close to 4700 K and an excellent color rendering index (CRI) ≥90. They are relatively stable, with the emission color remaining almost unchanged when the current densities increase from 20 to 260 mA cm?2. The use of these polymers enables WPLEDs with a superior trade‐off between device efficiency, CRI, and color stability.  相似文献   

8.
Strong intermolecular interactions usually result in decreases in solubility and fluorescence efficiency of organic molecules. Therefore, amorphous materials are highly pursued when designing solution‐processable, electroluminescent organic molecules. In this paper, a non‐planar binaphthyl moiety is presented as a way of reducing intermolecular interactions and four binaphthyl‐containing molecules ( BNCM s): green‐emitting BBB and TBT as well as red‐emitting BTBTB and TBBBT , are designed and synthesized. The photophysical and electrochemical properties of the molecules are systematically investigated and it is found that TBT , TBBBT , and BTBTB solutions show high photoluminescence (PL) quantum efficiencies of 0.41, 0.54, and 0.48, respectively. Based on the good solubility and amorphous film‐forming ability of the synthesized BNCM s, double‐layer structured organic light‐emitting diodes (OLEDs) with BNCM s as emitting layer and poly(N‐vinylcarbazole) (PVK) or a blend of poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)benzidine] and PVK as hole‐transporting layer are fabricated by a simple solution spin‐coating procedure. Amongst those, the BTBTB based OLED, for example, reaches a high maximum luminance of 8315 cd · m−2 and a maximum luminous efficiency of 1.95 cd · A−1 at a low turn‐on voltage of 2.2 V. This is one of the best performances of a spin‐coated OLED reported so far. In addition, by doping the green and red BNCM s into a blue‐emitting host material poly(9,9‐dioctylfluorene‐2,7‐diyl) high performance white light‐emitting diodes with pure white light emission and a maximum luminance of 4000 cd · m−2 are realized.  相似文献   

9.
An excellent hybrid III‐nitride/nanocrystal nanohole light‐emitting diode (h‐LED) has been developed utilizing nonradiative resonant energy transfer (NRET) between violet/blue emitting InGaN/GaN multiple quantum wells (MQWs) and various wavelength emitting nanocrystals (NCs) as color‐conversion mediums. InGaN/GaN MQWs are fabricated into nanoholes by soft nanoimprint lithography to minimize the separation between MQWs and NCs. A significant reduction in the decay lifetime of excitons in the MQWs of the hybrid structure has been observed as a result of the NRET from the nitride emitter to NCs. The NRET efficiency of the hybrid structures is obtained from the decay curves, as high as 80%. Moreover, a modified Förster formulation has exhibited that the exciton coupling distance in the hybrid structures is less than the Förster's radius, demonstrating a strong coupling between MQWs and NCs. Finally, based on a systemic optimization for white emission indexes, a series of hybrid ternary complementary color h‐LEDs have been demonstrated with a high color rendering index, up to 82, covering the white light emission at different correlated color temperatures ranging from 2629 to 6636 K, corresponding to warm white, natural white, and cold white.  相似文献   

10.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

11.
The aggregation‐induced emission (AIE) phenomenon is important in organic light‐emitting diodes (OLEDs), for it can potentially solve the aggregation‐caused quenching problem. However, the performance of AIE fluorophor‐based OLEDs (AIE OLEDs) is unsatisfactory, particularly for deep‐blue devices (CIEy < 0.15). Here, by enhancing the device engineering, a deep‐blue AIE OLED exhibits low voltage (i.e., 2.75 V at 1 cd m?2), high luminance (17 721 cd m?2), high efficiency (4.3 lm W?1), and low efficiency roll‐off (3.6 lm W?1 at 1000 cd m?2), which is the best deep‐blue AIE OLED. Then, blue AIE fluorophors, for the first time, have been demonstrated to achieve high‐performance hybrid white OLEDs (WOLEDs). The two‐color WOLEDs exhibit i) stable colors and the highest efficiency among pure‐white hybrid WOLEDs (32.0 lm W?1); ii) stable colors, high efficiency, and very low efficiency roll‐off; or iii) unprecedented efficiencies at high luminances (i.e., 70.2 cd A?1, 43.4 lm W?1 at 10 000 cd m?2). Moreover, a three‐color WOLED exhibits wide correlated color temperatures (10 690–2328 K), which is the first hybrid WOLED showing sunlight‐style emission. These findings will open a novel concept that blue AIE fluorophors are promising candidates to develop high‐performance hybrid WOLEDs, which have a bright prospect for the future displays and lightings.  相似文献   

12.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

13.
Phosphorescent organic light‐emitting diodes (OLEDs) with ultimate efficiency in terms of the external quantum efficiency (EQE), driving voltage, and efficiency roll‐off are reported, making use of an exciplex‐forming co‐host. This exciplex‐forming co‐host system enables efficient singlet and triplet energy transfers from the host exciplex to the phosphorescent dopant because the singlet and triplet energies of the exciplex are almost identical. In addition, the system has low probability of direct trapping of charges at the dopant molecules and no charge‐injection barrier from the charge‐transport layers to the emitting layer. By combining all these factors, the OLEDs achieve a low turn‐on voltage of 2.4 V, a very high EQE of 29.1% and a very high power efficiency of 124 lm W?1. In addition, the OLEDs achieve an extremely low efficiency roll‐off. The EQE of the optimized OLED is maintained at more than 27.8%, up to 10 000 cd m?2.  相似文献   

14.
A strategy by encapsulating organic dyes into the pores of a luminescent metal‐organic framework (MOF) is developed to achieve white‐light‐emitting phosphor. Both the red‐light emitting dye 4‐(p‐dimethylaminostyryl)‐1‐methylpyridinium ( DSM ) and the green‐light emitting dye acriflavine ( AF ) are encapsulated into a blue‐emitting anionic MOF ZJU‐28 through an ion‐exchange process to yield the MOF?dye composite ZJU‐28?DSM/AF . The emission color of the obtained composite can be easily modulated by simply adjusting the amount and component of dyes. With careful adjustment of the relative concentration of the dyes DSM and AF , the resulting ZJU‐28?DSM/AF (0.02 wt% DSM , 0.06 wt% AF ) exhibits a broadband white emission with ideal CIE coordinates of (0.34, 0.32), high color‐rendering index value of 91, and moderate correlated color temperature value of 5327 K. Such a strategy can be easily expanded to other luminescent MOFs and dyes, thus opening a new perspective for the development of white light emitting materials.  相似文献   

15.
Thermally activated delayed fluorescence (TADF)‐based white organic light‐emitting diodes (WOLEDs) are highly attractive because the TADF emitters provide a promising alternative route to harvest triplet excitons. One of the major challenges is to achieve superior efficiency/color rendering index/color stability and low efficiency roll‐off simultaneously. In this paper, high‐performance hybrid WOLEDs are demonstrated by employing an efficient blue TADF emitter combined with red and green phosphorescent emitters. The resulting WOLED shows the maximum external quantum efficiency, current efficiency, and power efficiency of 23.0%, 51.0 cd A?1, and 51.7 lm W?1, respectively. Moreover, the device exhibits extremely stable electroluminescence spectra with a high color rendering index of 89 and Commission Internationale de L'Eclairage coordinates of (0.438, 0.438) at the practical brightness of 1000 cd m?2. The achievement of these excellent performances is systematically investigated by versatile experimental and theoretical evidences, from which it is concluded that the utilization of a blue‐green‐red cascade energy transfer structure and the precise manipulation of charges and excitons are the key points. It can be anticipated that this work might be a starting point for further research towards high‐performance hybrid WOLEDs.  相似文献   

16.
Substrates with high transmittance and high haze are desired for increasing the light outcoupling efficiency of organic light‐emitting diodes (OLEDs). However, most of the polymer films used as substrate have high transmittance and low haze. Herein, a facile route to fabricate a built‐in haze glass‐fabric reinforced siloxane hybrid (GFRH) film having high total transmittance (≈89%) and high haze (≈89%) is reported using the scattering effect induced by refractive index contrast between the glass fabric and the siloxane hybrid (hybrimer). The hybrimer exhibiting large refractive index contrast with the glass fabric is synthesized by removing the phenyl substituents. Besides its optical properties, the hazy GFRH films exhibit smooth surface (Rsq = 0.2 nm), low thermal expansion (13 ppm °C−1), high chemical stability, and dimensional stability. Owing to the outstanding properties of the GFRH film, OLED is successfully fabricated onto the film exhibiting 74% external quantum efficiency enhancement. The hazy GFRH's unique optical properties, excellent thermal stability, outstanding dimensional stability, and the ability to perform as a transparent electrode enable them as a wide ranging substrate for the flexible optoelectronic devices.  相似文献   

17.
Highly power‐efficient white organic light‐emitting diodes (OLEDs) are still challenging to make for applications in high‐quality displays and general lighting due to optical confinement and energy loss during electron‐photon conversion. Here, an efficient white OLED structure is shown that combines deterministic aperiodic nanostructures for broadband quasi‐omnidirectional light extraction and a multilayer energy cascade structure for energy‐efficient photon generation. The external quantum efficiency and power efficiency are raised to 54.6% and 123.4 lm W?1 at 1000 cd m?2. An extremely small roll‐off in efficiency at high luminance is also obtained, yielding a striking value of 106.5 lm W?1 at 5000 cd m?2. In addition to a substantial increase in efficiency, this device structure simultaneously offers the superiority of angular color stability over the visible wavelength range compared to conventional OLEDs. It is anticipated that these findings could open up new opportunities to promote white OLEDs for commercial applications.  相似文献   

18.
Comprehensive theoretical and experimental studies are reported on organic light‐emitting devices (OLEDs) adopting either the conventional high‐index indium tin oxide (ITO) electrode or the low‐index conducting polymer electrode, either isotropic emitters or emitters having preferentially horizontal emitting dipoles, and different layer structures. Intriguingly, with the use of low‐index electrode in the device, in addition to the known suppression of waveguided modes, the surface plasmon modes can also be effectively suppressed with larger emitter‐to‐metal distances yet with better immunity to accompanied increase of the competing waveguided modes (induced by thicker organic layers) as in the ITO device. As a result, overall coupling efficiencies of OLED internal radiation into substrates can be significantly enhanced over those with ITO electrodes. Through effective extraction of radiation within substrates, green phosphorescent OLEDs adopting both the low‐index ITO‐free electrode and the preferentially horizontal dipole emitter (with a horizontal dipole ratio of 76%) achieve a high external quantum efficiency (EQE) of up to ≈64%. The simulation also predicts that very high EQEs of ≥80% are possible with highly horizontal dipole emitters for all red/green/blue/white OLEDs, clearly revealing the potential of combining low‐index transparent electrodes and horizontal dipole emitters for high‐efficiency OLEDs.  相似文献   

19.
Highly efficient lepidine‐based phosphorescent iridium(III) complexes with pentane‐2,4‐dione or triazolpyridine as ancillary ligands have been designed and prepared by a newly developed facile synthetic route. Fluorine atoms and trifluoromethyl groups have been introduced into the different positions of ligand, and their influence on the photophysical properties of complexes has been investigated in detail. All the triazolpyridine‐based complexes display the blueshifted dual‐peak emission compared to the pentane‐2,4‐dione‐based ones with a broad single‐peak emission. The complexes show emission with broad full width at half maximum (FWHM) over 100 nm, and the emissions are ranges from greenish–yellow to orange region with the absolute quantum efficiency (ΦPL) of 0.21–0.92 in solution, i.e., ΦPL = 0.92 ( 18 ), which is the highest value among the reported neutral yellow iridium(III) complexes. Furthermore, high‐performance yellow and complementary‐color‐based white organic light‐emitting diodes (OLEDs) have been fabricated. The FWHMs of the yellow, greenish–yellow OLEDs are in the range of 94–102 nm, which are among the highest values of the reported yellow or greenish–yellow‐emitting devices without excimer emission. The maximum external quantum efficiency of monochrome OLEDs can reach 24.1%, which is also the highest value among the reported yellow or greenish–yellow devices. The color rendering indexes of blue and complementary yellow‐based white OLED is as high as 78.  相似文献   

20.
The lifetime of the organic devices remains a major challenge that must be overcome before the wide application of white organic light‐emitting diodes (WOLEDs) technology. In this work, we present a new strategy to achieve WOLEDs with an extremely long lifetime by wisely control of the recombination zone. A blue emitting layer of 6,6′‐(1,2‐ethenediyl)bis(N‐2‐naphthalenyl‐N‐phenyl‐2‐naphthalenamine doped 9‐(1‐naphthyl)‐10‐(2‐naphthyl)‐anthracene was deposited on top of the mixed host blue emitting layer to prevent hole penetration into the electron transporting layer and to attain better confinement of carrier recombination. In this way, we obtained a WOLED with a record high lifetime of over 150 000 hours at an initial brightness of 1000 cd m?2, 40 times longer than the conventional bilayer WOLED. The electroluminescent spectra of the long‐lived WOLED showed almost no color‐shifting after accelerated aging. It is anticipated that these results might be a starting point for further research towards ultrastable OLED displays and lightings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号