首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With computational fluid dynamics (CFD) it is possible to get a detailed view of the flow behaviour of the fluidized beds. A profound and fundamental understanding of bed dynamics such as bed pressure drop, bed expansion ratio, bed fluctuation ratio, and minimum fluidization velocity of homogeneous binary mixtures has been made in a semi‐cylindrical fluidized column for gas–solid systems, resulting in a predictive model for fluidized beds. In the present work attempt has been made to study the effect of different system parameters (viz., size and density of the bed materials and initial static bed height) on the bed dynamics. The correlations for the bed expansion and bed fluctuations have been developed on the basis of dimensional analysis using these system parameters. Computational study has also been carried out using a commercial CFD package Fluent (Fluent, Inc.). A multifluid Eulerian model incorporating the kinetic theory for solid particles was applied in order to simulate the gas–solid flow. CFD simulated bed pressure drop has been compared with the experimental bed pressure drops under different conditions for which the results show good agreements.  相似文献   

2.
A predictive model was developed for the fully developed zone of a circulating fluidized bed (CFB) riser reactor operating in the fast fluidization regime that overcomes limitations of existing models. The model accounts for the upward flow of gas and solids in the core and downward flow of the two phases in the annulus. Additionally, a numerical solution methodology for the simulation of a riser reactor employing the hydrodynamic model was devised. A simulation was performed using the fast, main Claus reaction to demonstrate the effects of backmixing in the fast fluidization regime. It was found that the molar flow rates of the reactants leaving a fast fluidized CFB riser reactor were significantly higher than those leaving an identical reactor operating in the pneumatic transport regime.  相似文献   

3.
It is well known that hydrodynamics observed in large scale gas–solid fluidized beds are different from those observed in smaller scale beds. In this article, an efficient two‐fluid model based on kinetic theory of granular flow is applied, with the goal to highlight and investigate hydrodynamics differences between three‐dimensional fluidized beds of diameter 0.10, 0.15, 0.30, 0.60, and 1.0 m, focusing on the bubble and solids flow characteristics in the bubbling regime. Results for the 0.30 m diameter bed are compared with experimental results from the literature. The bubble size evolution closely follows a correlation proposed by Werther for small beds, and a correlation proposed by Darton for sufficiently large beds. The bubble size increases as the bed diameter is increased from 0.10 to 0.30 m, and remains approximately constant for bed diameters from 0.30 to 1.0 m. Concurrently, an increase in bubble rise velocity is observed, with a much high bubble rise velocity in the largest bed of diameter 1.0 m due to gulf stream circulations. The dynamics in shallow and deep beds is predicted to be different, with marked differences in bubble size and solids circulation patterns. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1492–1506, 2015  相似文献   

4.
5.
The effects of sound assistance on fluidization behaviors were systematically investigated in a gas–solid acoustic fluidized bed. A model modified from Syamlal–O'Brien drag model was established. The original solid momentum equation was developed and an acoustic model was also proposed. The radial particle volume fraction, axial root‐mean‐square of bed pressure drop, granular temperature, and particle velocity in gas–solid acoustic fluidized bed were simulated using computational fluid dynamics (CFD) code Fluent 6.2. The results showed that radial particle volume fraction increased using modified drag model compared with that using the original one. Radial particle volume fraction was revealed as a parabolic concentration profile. Axial particle volume fraction decreased with the increasing bed height. The granular temperature increased with increasing sound pressure level. It showed that simulation values using CFD code Fluent 6.2 were in agreement with the experimental data. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

6.
Three‐dimensional high‐resolution numerical simulations of a gas–solid jet in a high‐density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL. Published 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

7.
The effect of agitation on the fluidization performance of a gas–solid fluidized bed with a frame impeller is experimentally and numerically investigated. A 3‐D unsteady computational fluid dynamics method is used, combining a two‐fluid model and the kinetic theory of granular flow. The rotation of the impeller is implemented with a multiple reference frame method. The numerical model is validated using experimental data of the bed pressure drop and pressure fluctuation. Although the minimum fluidizing velocity and bed pressure drop are independent of the impeller agitation, a sufficiently high agitation speed yields higher fluidization performance with reduced bubble diameters and internal circulations of particles. The fluidized bed can be divided into three zones: inlet zone where the gas distribution plays a major role, agitated fluidization zone where the impeller agitation has a positive effect on fluidization, and free fluidization zone where the impeller agitation has no effect on fluidization. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1066–1074, 2013  相似文献   

8.
Although the use of computational fluid dynamics (CFD) model coupled with population balance (CFD‐PBM) is becoming a common approach for simulating gas–solid flows in polydisperse fluidized bed polymerization reactors, a number of issues still remain. One major issue is the absence of modeling the growth of a single polymeric particle. In this work a polymeric multilayer model (PMLM) was applied to describe the growth of a single particle under the intraparticle transfer limitations. The PMLM was solved together with a PBM (i.e. PBM‐PMLM) to predict the dynamic evolution of particle size distribution (PSD). In addition, a CFD model based on the Eulerian‐Eulerian two‐fluid model, coupled with PBM‐PMLM (CFD‐PBM‐PMLM), has been implemented to describe the gas–solid flow field in fluidized bed polymerization reactors. The CFD‐PBM‐PMLM model has been validated by comparing simulation results with some classical experimental data. Five cases including fluid dynamics coupled purely continuous PSD, pure particle growth, pure particle aggregation, pure particle breakage, and flow dynamics coupled with all the above factors were carried out to examine the model. The results showed that the CFD‐PBM‐PMLM model describes well the behavior of the gas–solid flow fields in polydisperse fluidized bed polymerization reactors. The results also showed that the intraparticle mass transfer limitation is an important factor in affecting the reactor flow fields. © 2011 American Institute of Chemical Engineers AIChE J, 58: 1717–1732, 2012  相似文献   

9.
The erosion of the immersed tubes in a bubbling‐fluidized bed is studied numerically using an Eulerian–Lagrangian approach coupling with a particle‐scale erosion model. In this approach, the motion of gas and particles is simulated by the CFD–DEM method, and an erosion model SIEM (shear impact energy model) is proposed to predict the erosion of the tubes. The model is validated by the good agreement of the simulation results and previous experimental data. By analyzing the simulation results, some characteristics of the tube erosion in the fluidized bed are obtained, such as the distribution of the erosion rate around the tube, the variation of the erosion rate with the position of the tube, the effect of the friction coefficient of particles on the erosion, the relationship between the maximum and the average erosion rate, etc. The microscale behavior of particles around the tubes is also revealed and the linear relationship between the erosion and the shear impact energy is confirmed by the simulation results and experiment. The agreement between simulation and experiment proves that the microscale approach proposed in this article has high accuracy for predicting erosion of the tubes in the fluidized bed, and has potential to be applied to modeling the process in other chemical equipment facing solid particle erosion. © 2016 American Institute of Chemical Engineers AIChE J, 63: 418–437, 2017  相似文献   

10.
The flow in a gas–liquid–solid circulating fluidized bed is self‐organised and manifests itself with clustering of particles and bubbles. The clustering behaviour in the fluidized bed at low solid holdups of resin particles was experimentally investigated with a high‐speed image measurement and treatment technique of complementary metal oxide semiconductor to enhance the fundamental understanding on such a flow. Several new physical quantities were suggested to characterise such ordered flow structures. The main findings are as follows. The clusters of solid particles largely exist as doublets and triplets, the mixed groups of particles and bubbles mostly exist as one bubble carrying two to four particles. Increasing superficial liquid velocity, particle diameter or density weakens the aggregation degrees of both particle and mixed clusters in the riser and downer, except that the increase of superficial liquid velocity enhances the mixed clustering behaviour in the riser. The climbing of the auxiliary liquid velocity or liquid phase viscosity intensifies the aggregation behaviour, except that the increase of liquid phase viscosity reduces the mixed clustering degree in the riser. The influences of superficial gas velocity and surface tension of liquid phase on the clustering behaviour seem to be a little complex and the trends are not simply increasing or decreasing. The life cycle of solid particle clusters in the GLS riser is not sensitive to the operation conditions, being around 0.07 s. The mixed clusters' life cycle is more sensitive to the conditions and physical properties of phases, changing from 0.02 to 0.07 s.  相似文献   

11.
Two different approaches to constitutive relations for filtered two‐fluid models (TFM) of gas–solid flows are deduced. The first model (Model A) is derived using systematically filtered results obtained from a highly resolved simulation of a bubbling fluidized bed. The second model (Model B) stems from the assumption of the formation of subgrid heterogeneities inside the suspension phase of fluidized beds. These approaches for the unresolved terms appearing in the filtered TFM are, then, substantiated by the corresponding filtered data. Furthermore, the presented models are verified in the case of the bubbling fluidized bed used to generate the fine grid data. The numerical results obtained on coarse grids demonstrate that the computed bed hydrodynamics is in fairly good agreement with the highly resolved simulation. The results further show that the contribution from the unresolved frictional stresses is required to correctly predict the bubble rise velocity using coarse grids. © 2013 American Institute of Chemical Engineers AIChE J, 60: 839–854, 2014  相似文献   

12.
Bubble characteristics in a three‐dimension gas‐fluidized bed (FB) have been measured using noninvasive ultrafast electron beam X‐ray tomography. The measurements are compared with predictions by a two‐fluid model (TFM) based on kinetic theory of granular flow. The effect of bed material (glass, alumina, and low linear density polyethylene (LLDPE), dp ~1 mm), inlet gas velocity, and initial particle bed height on the bubble behavior is investigated in a cylindrical column of 0.1‐m diameter. The bubble rise velocity is determined by cross correlation of images from dual horizontal planes. The bubble characteristics depend highly upon the particle collisional properties. The bubble sizes obtained from experiments and simulations show good agreement. The LLDPE particles show high gas hold‐up and higher bubble rise velocity than predicted on basis of literature correlations. The bed expansion is relatively high for LLDPE particles. The X‐ray tomography and TFM results provide in‐depth understanding of bubble behavior in FBs containing different granular material types. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1632–1644, 2014  相似文献   

13.
Detailed local flow structures are investigated in bubbling and turbulent fluidized bed with FCC particles. The operating conditions ranges from 0.06 to 1.4 m/s. Extensive experiments are carried out using a newly developed optical fiber probe system, which can measure the solids concentration and velocity at multi-points. The results reveal that with increasing Ug, local solids concentrations go through three evolution stages, reflecting a gradual regime transition process. Under all operating conditions, upflowing and descending particles co-exist at all measuring locations. The upflowing particle velocity is strong function of both superficial gas velocity and spatial position. However, the descending particle velocity mainly depends on superficial gas velocity. The bed radial symmetry and the effects of static bed height on the local flow structures are also investigated.  相似文献   

14.
The drag models typically used for gas–solids interaction are mainly developed based on homogeneous systems of flow passing fixed particle assembly. It has been shown that the heterogeneous structures, i.e., clusters and bubbles in fluidized beds, need to be resolved to account for their effect in the numerical simulations. Since the heterogeneity is essentially captured through the local concentration gradient in the computational cells, this study proposes a simple approach to account for the non‐uniformity of solids spatial distribution inside a computational cell and its effect on the interaction between gas and solid phases. To validate this approach, the predicted drag coefficient has been compared to the results from direct numerical simulations. In addition, the need to account for this type of heterogeneity is discussed for a periodic riser flow simulation with highly resolved numerical grids and the impact of the proposed correction for drag is demonstrated. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1203–1212, 2017  相似文献   

15.
吴诚  高希  成有为  王丽军  李希 《化工学报》2013,64(3):858-866
在湍动流化床中,过渡段对于包括甲醇制烯烃在内的气固催化快反应有着重要的作用。采用PV6D反射型光纤探针对内径95 mm的湍动流化床内过渡段的固含率分布和脉动参数进行了测量,分别考察了表观气速和静床高的影响,并采用修正的基于颗粒动力学的三段曳力双流体模型进行模拟。实验表明,湍动流化床过渡段中固含率的轴向分布呈现S型和指数型两种类型,固含率轴向与径向分布都在过渡段内出现最大梯度,表明过渡段中固体浓度分布比稀相段和密相段更不均匀。表观气速和静床高的变化将导致S型和指数型分布的相互转变,并且对过渡段底部与壁面附近的固体高浓度区影响最为显著。局部固含率脉动概率密度分布表明,在静床高较小时,随着气速的增大,床层下部气含率最大值位置将从中心区移动至环隙区,呈现气含率的双峰型分布。本文提出的修正三段曳力模型考虑了颗粒团聚的影响,对过渡段中分布板影响区之外的固含率分布均能较好地模拟。  相似文献   

16.
In many industrial processes involving gas–solid fluidized bed rectors, the addition of a liquid phase significantly alters the hydrodynamics. To fully characterize the hydrodynamics in the fluidized bed, pressure and acoustic measuring techniques were applied to study the behavior of gas bubbles and particles. A camera was used to take pictures to verify the pressure and acoustic results. During the liquid‐addition process, the pressure technique captured the bubble size variation and bubble motion while the acoustic technique reflected particle motion and particle size growth. Hurst and V‐statistics analyses of acoustic emission were used for the first time to detect periodic behavior during the injection process. The new break formation and change trend of Vmax were used as the criteria to judge occurrence of abnormal fluidization states, such as agglomeration and gas channeling formation. These measurement techniques are beneficial in the elimination of adverse effects caused by the addition of liquid. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1056–1065, 2013  相似文献   

17.
Fluidized bed reactors (FBRs) have been developed to establish multiple temperature zones for various industrial processes. To overcome the common weakness, this work proposed to spray liquid into bottom and upper zones, respectively, to realize multiple temperature zones FBR (MTZFBR). Temperature, pressure, and acoustic emission techniques were applied to fully characterize liquid interaction and hydrodynamics. Compared with the bottom liquid‐spraying approach, the upper liquid‐spraying approach showed higher temperature difference (ΔT) and better fluidization stability, thus was selected for further control studies. Effects of liquid flow rate, static bed height, and inlet gas temperature on MTZFBR were studied systematically. The results showed that increasing liquid evaporation behavior or decreasing liquid bridge behavior enhance ΔT and fluidization stability and vice versa. G–L–S fluidization pattern depended mostly on the liquid behaviors and fluidization stability, and thus the stabilized MTZFBR could be regarded as a coexisted mode of two distinctive G–L–S fluidization patterns. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1454–1466, 2016  相似文献   

18.
In order to simulate gas-solids flows with complex geometry, the boundary element method was incorporated into the implementation of a combined model of computational fluid dynamics and discrete element method. The resulting method was employed to simulate hydrodynamics in a fluidized bed with immersed tubes. The transient simulation results showed particle and bubble dynamics. The bubble coalescence and break-up behavior when passing the immersed tubes was successfully predicted. The gassolid flow pattern in the fluidized bed is changed greatly because of the immersed tubes. As particles and gas are come in contact with the immersed tubes, the gas bubbles will be deformed. The collisions between particles and tubes will make the tubes surrounded by air pockets most of the time and this is unfavorable for the heat transfer between particles and tubes. __________ Translated from Chemical Engineering, 2007, 35(11): 21–24 [译自:化学工程]  相似文献   

19.
A scintillation gamma camera was used for measuring the instantaneous velocity profile and average velocity as well as the trajectories of a radioactive particle in small laboratory scale air–polyethylene–fluidized beds. A large number of frames, with frequencies between 1 and 50 Hz, were analyzed to investigate the effects of bed height, gas velocity and particle morphology. Subsequently: (1) horizontal and axial variations of the particle velocity were found; (2) three different flow zones along the axis (i.e., entrance zone, circulation zone and free board) were quantified; and (3) a characteristic time and a new definition of circulation (cycle) period were introduced. It was also found that the particle sometimes oscillates in the free board or gets trapped in the entrance zone.  相似文献   

20.
赵永志  程易 《化学工程》2007,35(11):21-24
为模拟具有复杂几何结构的气固流动系统,文中将计算流体力学和离散单元法与边界元方法结合起来,对沉浸管式流化床内颗粒及气泡的运动行为进行了数值模拟。模拟计算得到的瞬态流型图揭示了气泡绕流沉浸管束时出现的合并和破碎状态及颗粒群的详细运动行为,发现床内气固二相的流动受到沉浸管束存在的显著影响。当颗粒及气相的流动受到沉浸管的阻碍而绕管流动过程中气泡会发生变形,变得扭曲狭长且易被撕碎。同时颗粒与管道壁面碰撞会造成气固二相复杂的动态运动形式,床内的管道大部分时间会被气穴包围,将严重阻碍管道与颗粒之间的传热。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号