首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the effect of the molecular structure of three different donor units, naphthalene (Np), bithiophene (BT), and thiophene–vinylene–thiophene (TVT), in isoindigo (IIG)‐based donor –acceptor conjugated polymers (PIIG‐Np, PIIG‐BT and PIIG‐TVT) on the charge carrier mobility of organic field‐effect transistors (OFETs). The charge transport properties of three different IIG‐based polymers strongly depend on donor units. PIIG–BT OFETs showed 50 times higher hole mobility (0.63 cm2 V?1 s?1) than PIIG–TVT and PIIG–Np ones of ≈ 0.01 cm2 V?1 s?1 with CYTOP dielectric though the BT units have less planarity than the TVT and Np units. The reasons for the different mobility in IIG‐based polymers are studied by analyzing the energy structure by absorption spectra, calculating transport levels by density functional theory, investigating the in‐ and out‐of‐plane crystallinity of thin film by grazing‐incidence wide‐angle X‐ray scattering, and extracting key transport parameters via low‐temperature measurements. By combining theoretical, optical, electrical, and structural analyses, this study finds that the large difference in OFET mobility mainly originates from the transport disorders determined by the different microcrystal structure, rather than the intrinsic transport properties in isolated chains for different polymers.  相似文献   

2.
A high‐performance naphthalene diimide (NDI)‐based conjugated polymer for use as the active layer of n‐channel organic field‐effect transistors (OFETs) is reported. The solution‐processable n‐channel polymer is systematically designed and synthesized with an alternating structure of long alkyl substituted‐NDI and thienylene–vinylene–thienylene units (PNDI‐TVT). The material has a well‐controlled molecular structure with an extended π‐conjugated backbone, with no increase in the LUMO level, achieving a high mobility and highly ambient stable n‐type OFET. The top‐gate, bottom‐contact device shows remarkably high electron charge‐carrier mobility of up to 1.8 cm2 V?1 s?1 (Ion/Ioff = 106) with the commonly used polymer dielectric, poly(methyl methacrylate) (PMMA). Moreover, PNDI‐TVT OFETs exhibit excellent air and operation stability. Such high device performance is attributed to improved π–π intermolecular interactions owing to the extended π‐conjugation, apart from the improved crystallinity and highly interdigitated lamellar structure caused by the extended π–π backbone and long alkyl groups.  相似文献   

3.
Organic crystals that combine high charge‐carrier mobility and excellent light‐emission characteristics are expected to be of interest for light‐emitting transistors and diodes, and may offer renewed hope for electrically pumped laser action. High‐luminescence‐efficiency cyano‐substituted oligo(p‐ phenylene vinylene) (CN‐DPDSB) crystals (η ≈ 95%) grown by the physical vapor transport method is reported here, with high mobilities (at ≈10?2 cm2 V?1 s?1 order of magnitude) as measured by time‐of‐flight. The CN‐DPDSB crystals have well‐balanced bipolar carrier‐transport characteristics (μhole≈ 2.5–5.5 × 10?2 cm2 V?1 s?1; μelectron ≈ 0.9–1.3 × 10?2 cm2 V?1 s?1) and excellent optically pumped laser properties. The threshold for amplified spontaneous emission (ASE) is about 4.6 μJ per pulse (23 KW cm?2), while the gain coefficient at the peak wavelength of ASE and the loss coefficient caused by scattering are ≈35 and ≈1.7 cm?1, respectively. This indicates that CN‐DPDSB crystals are promising candidates for organic laser diodes.  相似文献   

4.
A donor–acceptor (D–A) semiconducting copolymer, PDPP‐TVT‐29, comprising a diketopyrrolopyrrole (DPP) derivative with long, linear, space‐separated alkyl side‐chains and thiophene vinylene thiophene (TVT) for organic field‐effect transistors (OFETs) can form highly π‐conjugated structures with an edge‐on molecular orientation in an as‐spun film. In particular, the layer‐like conjugated film morphologies can be developed via short‐term thermal annealing above 150 °C for 10 min. The strong intermolecular interaction, originating from the fused DPP and D–A interaction, leads to the spontaneous self‐assembly of polymer chains within close proximity (with π‐overlap distance of 3.55 Å) and forms unexpectedly long‐range π‐conjugation, which is favorable for both intra‐ and intermolecular charge transport. Unlike intergranular nanorods in the as‐spun film, well‐conjugated layers in the 200 °C‐annealed film can yield more efficient charge‐transport pathways. The granular morphology of the as‐spun PDPP‐TVT‐29 film produces a field‐effect mobility (μ FET) of 1.39 cm2 V?1 s?1 in an OFET based on a polymer‐treated SiO2 dielectric, while the 27‐Å‐step layered morphology in the 200 °C‐annealed films shows high μ FET values of up to 3.7 cm2 V?1 s?1.  相似文献   

5.
Solution‐processed small‐molecule bulk heterojunction (BHJ) ambipolar organic thin‐film transistors are fabricated based on a combination of [2‐phenylbenzo[d,d']thieno[3,2‐b;4,5‐b']dithiophene (P‐BTDT) : 2‐(4‐n‐octylphenyl)benzo[d,d ']thieno[3,2‐b;4,5‐b']dithiophene (OP‐BTDT)] and C60. Treating high electrical performance vacuum‐deposited P‐BTDT organic semiconductors with a newly developed solution‐processed organic semiconductor material, OP‐BTDT, in an optimized ratio yields a solution‐processed p‐channel organic semiconductor blend with carrier mobility as high as 0.65 cm2 V?1 s?1. An optimized blending of P‐BTDT:OP‐BTDT with the n‐channel semiconductor, C60, results in a BHJ ambipolar transistor with balanced carrier mobilities for holes and electrons of 0.03 and 0.02 cm2 V?1 s?1, respectively. Furthermore, a complementary‐like inverter composed of two ambipolar thin‐film transistors is demonstrated, which achieves a gain of 115.  相似文献   

6.
Facile one‐pot [1 + 1 + 2] and [2 + 1 + 1] syntheses of thieno[3,2‐b]thieno[2′,3′:4,5]thieno[2,3‐d]thiophene (tetrathienoacene; TTA) semiconductors are described which enable the efficient realization of a new TTA‐based series for organic thin‐film transistors (OTFTs). For the perfluorophenyl end‐functionalized derivative DFP‐TTA , the molecular structure is determined by single‐crystal X‐ray diffraction. This material exhibits n‐channel transport with a mobility as high as 0.30 cm2V?1s?1 and a high on‐off ratio of 1.8 × 107. Thus, DFP‐TTA has one of the highest electron mobilities of any fused thiophene semiconductor yet discovered. For the phenyl‐substituted analogue, DP‐TTA , p‐channel transport is observed with a mobility as high as 0.21 cm2V?1s?1. For the 2‐benzothiazolyl (BS‐) containing derivative, DBS‐TTA , p‐channel transport is still exhibited with a hole mobility close to 2 × 10?3 cm2V?1s?1. Within this family, carrier mobility magnitudes are strongly dependent on the semiconductor growth conditions and the gate dielectric surface treatment.  相似文献   

7.
Using non‐chlorinated solvents for polymer device fabrication is highly desirable to avoid the negative environmental and health effects of chlorinated solvents. Here, a non‐chlorinated mixed solvent system, composed by a mixture of tetrahydronaphthalene and p­‐xylene, is described for processing a high mobility donor‐acceptor fused thiophene‐diketopyrrolopyrrole copolymer (PTDPPTFT4) in thin film transistors. The effects of the use of a mixed solvent system on the device performance, e.g., charge transport, morphology, and molecular packing, are investigated. p‐Xylene is chosen to promote polymer aggregation in solution, while a higher boiling point solvent, tetrahydronaphthalene, is used to allow a longer evaporation time and better solubility, which further facilitates morphological tuning. By optimizing the ratio of the two solvents, the charge transport characteristics of the polymer semiconductor device are observed to significantly improve for polymer devices deposited by spin coating and solution shearing. Average charge carrier mobilities of 3.13 cm2 V?1 s?1 and a maximum value as high as 3.94 cm2 V?1 s?1 are obtained by solution shearing. The combination of non‐chlorinated mixed solvents and the solution shearing film deposition provide a practical and environmentally‐friendly approach to achieve high performance polymer transistor devices.  相似文献   

8.
Although high carrier mobility organic field‐effect transistors (OFETs) are required for high‐speed device applications, improving the carrier mobility alone does not lead to high‐speed operation. Because the cut‐off frequency is determined predominantly by the total resistance and parasitic capacitance of a transistor, it is necessary to miniaturize OFETs while reducing these factors. Depositing a dopant layer only at the metal/semiconductor interface is an effective technique to reduce the contact resistance. However, fine‐patterning techniques for a dopant layer are still challenging especially for a top‐contact solution‐processed OFET geometry because organic semiconductors are vulnerable to chemical damage by solvents. In this work, high‐resolution, damage‐free patterning of a dopant layer is developed to fabricate short‐channel OFETs with a dopant interlayer inserted at the contacts. The fabricated OFETs exhibit high mobility exceeding 10 cm2 V?1 s?1 together with a reasonably low contact resistance, allowing for high frequency operation at 38 MHz. In addition, a diode‐connected OFET shows a rectifying capability of up to 78 MHz at an applied voltage of 5 V. This shows that an OFET can respond to the very high frequency band, which is beneficial for long‐distance wireless communication.  相似文献   

9.
Coupling between colloidal semiconductor nanocrystals (NCs) with long‐range order is critical for designing advanced nanostructures with controlled energy flow and charge carrier transport. Herein, under the premise of keeping long‐range order in 2D NC monolayer, its native organic ligands are exchanged with halogen ions in situ at the liquid–air interface to enhance the coupling between NCs. Further treatments on the films with dimethyl sulfoxide, methanol, or their mixture effectively improve carrier mobility of the devices. The devices show repeatable enhanced p‐type transport behavior with hole mobility of up to 0.224 ± 0.069 cm2 V?1 s?1, the highest value reported for lead sulfide NC solids without annealing treatment. Thanks to accurate control over the surface of NCs as well as the structure of NC film, the ordered NC monolayer film of high hole mobility suggests great potentials for making reliable high performance devices.  相似文献   

10.
A new high‐performing small molecule n‐channel semiconductor based on diketopyrrolopyrrole (DPP), 2,2′‐(5,5′‐(2,5‐bis(2‐ethylhexyl)‐3,6‐dioxo‐2,3,5,6‐tetrahydropyrrolo[3,4‐c]pyrrole‐1,4‐diyl)bis(thiophene‐5,2‐diyl))bis(methan‐1‐yl‐1‐ylidene)dimalononitrile (DPP‐T‐DCV), is successfully synthesized. The frontier molecular orbitals in this designed structure are elaborately tuned by introducing a strong electron‐accepting functionality (dicyanovinyl). The well‐defined lamellar structures of the crystals display a uniform terrace step height corresponding to a molecular monolayer in the solid‐state. As a result of this tuning and the remarkable crystallinity derived from the conformational planarity, organic field‐effect transistors (OFETs) based on dense‐packed solution‐processed single‐crystals of DPP‐T‐DCV exhibit an electron mobility (μe) up to 0.96 cm2 V?1 s?1, one of the highest values yet obtained for DPP derivative‐based n‐channel OFETs. Polycrystalline OFETs show promise (with an μe up to 0.64 cm2 V?1 s?1) for practical utility in organic device applications.  相似文献   

11.
The influence of the substitution pattern (unsymmetrical or symmetrical), the nature of the side chain (linear or branched), and the processing of several solution processable alkoxy‐substituted poly(p‐phenylene vinylene)s (PPVs) on the charge‐carrier mobility in organic field‐effect transistors (OFETs) is investigated. We have found the highest mobilities in a class of symmetrically substituted PPVs with linear alkyl chains (e.g., R1, R2 = n‐C11H23, R3 = n‐C18H37). We have shown that the mobility of these PPVs can be improved significantly up to values of 10–2 cm2 V–1 s–1 by annealing at 110 °C. In addition, these devices display an excellent stability in air and dark conditions. No change in the electrical performance is observed, even after storage for thirty days in humid air.  相似文献   

12.
A series of new organic semiconductors for organic thin‐film transistors (OTFTs) using dithieno[3,2‐b:2′,3′‐d]thiophene as the core are synthesized. Their electronic and optical properties are investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), UV‐vis and photoluminescence spectroscopies, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The compounds exhibit an excellent field‐effect performance with a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. XRD patterns reveal these films, grown by vacuum deposition, to be highly crystalline, and SEM reveals well‐interconnected, microcrystalline domains in these films at room temperature. TGA and DSC demonstrate that the phenyl‐substituted compounds possess excellent thermal stability. Furthermore, weekly shelf‐life tests (under ambient conditions) of the OTFTs based on the phenyl‐substituted compounds show that the mobility for the bis(diphenyl)‐substituted thiophene was almost unchanged for more than two months, indicating a high environmental stability.  相似文献   

13.
A series of new organic semiconductors for organic thin‐film transistors using dithieno[3,2‐b:2′,3′‐d]thiophene as the core have been synthesized. In work reported by Liu, Zhu, and co‐workers on p. 426, the phenyl‐substituted compound exhibited a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. Weekly shelf‐life tests of the transistors based on the bis(diphenyl)‐substituted thiophene under ambient conditions showed that the mobility was almost unchanged after more than two months, demonstrating potential for applications in future organic electronics. A series of new organic semiconductors for organic thin‐film transistors (OTFTs) using dithieno[3,2‐b:2′,3′‐d]thiophene as the core are synthesized. Their electronic and optical properties are investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), UV‐vis and photoluminescence spectroscopies, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The compounds exhibit an excellent field‐effect performance with a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. XRD patterns reveal these films, grown by vacuum deposition, to be highly crystalline, and SEM reveals well‐interconnected, microcrystalline domains in these films at room temperature. TGA and DSC demonstrate that the phenyl‐substituted compounds possess excellent thermal stability. Furthermore, weekly shelf‐life tests (under ambient conditions) of the OTFTs based on the phenyl‐substituted compounds show that the mobility for the bis(diphenyl)‐substituted thiophene was almost unchanged for more than two months, indicating a high environmental stability.  相似文献   

14.
A newly synthesized high‐k polymeric insulator for use as gate dielectric layer for organic field‐effect transistors (OFETs) obtained by grafting poly(methyl methacrylate) (PMMA) in poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) via atom transfer radical polymerization transfer is reported. This material design concept intents to tune the electrical properties of the gate insulating layer (capacitance, leakage current, breakdown voltage, and operational stability) of the high‐k fluorinated polymer dielectric without a large increase in operating voltage by incorporating an amorphous PMMA as an insulator. By controlling the grafted PMMA percentage, an optimized P(VDF‐TrFE)‐g‐PMMA with 7 mol% grafted PMMA showing reasonably high capacitance (23–30 nF cm?2) with low voltage operation and negligible current hysteresis is achieved. High‐performance low‐voltage‐operated top‐gate/bottom‐contact OFETs with widely used high mobility polymer semiconductors, poly[[2,5‐bis(2‐octyldodecyl)‐2,3,5,6‐tetrahydro‐3,6‐dioxopyrrolo [3,4‐c]pyrrole‐1,4‐diyl]‐alt‐[[2,2′‐(2,5‐thiophene)bis‐thieno(3,2‐b)thiophene]‐5,5′‐diyl]] (DPPT‐TT), and poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) are demonstrated here. DPPT‐TT OFETs with P(VDF‐TrFE)‐g‐PMMA gate dielectrics exhibit a reasonably high field‐effect mobility of over 1 cm2 V?1 s?1 with excellent operational stability.  相似文献   

15.
This work innovatively develops a dual solution‐shearing method utilizing the semiconductor concentration region close to the solubility limit, which successfully generates large‐area and high‐performance semiconductor monolayer crystals on the millimeter scale. The monolayer crystals with poly(methyl methacrylate) encapsulation show the highest mobility of 10.4 cm2 V?1 s?1 among the mobility values in the reported solution‐processed semiconductor monolayers. With similar mobility to multilayer crystals, light is shed on the charge accumulation mechanism in organic field‐effect transistors (OFETs), where the first layer on interface bears the most carrier transport task, and the other above layers work as carrier suppliers and encapsulations to the first layer. The monolayer crystals show a very low dependency on channel directions with a small anisotropic ratio of 1.3. The positive mobility–temperature correlation reveals a thermally activated carrier transport mode in the monolayer crystals, which is different from the band‐like transport mode in multilayer crystals. Furthermore, because of the direct exposure of highly conductive channels, the monolayer crystal based OFETs can sense ammonia concentrations as low as 10 ppb. The decent sensitivity indicates the monolayer crystals are potential candidates for sensor applications.  相似文献   

16.
Here, a simple, nontoxic, and inexpensive “water‐inducement” technique for the fabrication of oxide thin films at low annealing temperatures is reported. For water‐induced (WI) precursor solution, the solvent is composed of water without additional organic additives and catalysts. The thermogravimetric analysis indicates that the annealing temperature can be lowered by prolonging the annealing time. A systematic study is carried out to reveal the annealing condition dependence on the performance of the thin‐film transistors (TFTs). The WI indium‐zinc oxide (IZO) TFT integrated on SiO2 dielectric, annealed at 300 °C for 2 h, exhibits a saturation mobility of 3.35 cm2 V?1 s?1 and an on‐to‐off current ratio of ≈108. Interestingly, through prolonging the annealing time to 4 h, the electrical parameters of IZO TFTs annealed at 230 °C are comparable with the TFTs annealed at 300 °C. Finally, fully WI IZO TFT based on YOx dielectric is integrated and investigated. This TFT device can be regarded as “green electronics” in a true sense, because no organic‐related additives are used during the whole device fabrication process. The as‐fabricated IZO/YOx TFT exhibits excellent electron transport characteristics with low operating voltage (≈1.5 V), small subthreshold swing voltage of 65 mV dec?1 and the mobility in excess of 25 cm2 V?1 s?1.  相似文献   

17.
Alkyl chains are basic units in the design of organic semiconductors for purposes of enhancing solubility, tuning electronic energy levels, and tailoring molecular packing. This work demonstrates that the carrier mobilities of indeno[1,2‐b ]fluorene‐6,12‐dione ( IFD )‐based semiconductors can be dramatically enhanced by the incorporation of sulfur‐ or nitrogen‐linked side chains. Three IFD derivatives possessing butyl, butylthio, and dibutylamino substituents are synthesized, and their organic field‐effect transistors (OFET) are fabricated and characterized. The IFD possessing butyl substituents exhibits a very poor charge transport property with mobility lower than 10?7 cm2 V?1 s?1. In contrast, the hole mobility is dramatically increased to 1.03 cm2 V?1 s?1 by replacing the butyl units with dibutylamino groups ( DBA‐IFD ), while the butylthio‐modified IFD ( BT‐IFD ) derivative exhibits a high and balanced ambipolar charge transport property with the maximum hole and electron mobilities up to 0.71 and 0.65 cm2 V?1 s?1, respectively. Moreover, the complementary metal–oxide–semiconductor‐like inverters incorporated with the ambipolar OFETs shows sharp inversions with a maximum gain value up to 173. This work reveals that modification of the aromatic core with heteroatom‐linked side chains, such as alkylthio or dialkylamino, can be an efficient strategy for the design of high‐performance organic semiconductors.  相似文献   

18.
Low‐cost solution‐processed CdTe nanocrystal (NC) solar cells always suffer from a high interface energy barrier and unbalanced hole/electron transport as well as anisotropic atom diffusion on the CdTe surface due to the limited amount of hole/electron interface materials or the difficulty in interface processing. In this work, a novel strategy is first adopted with gradient electron transport layer (CdS/CdSe) modification in the cathode and a new crosslinkable hole transport polymer (P‐TPA) implantation in the anode. The carrier recombination at interfaces is greatly decreased and thus the carrier collection is increased. Moreover, the light harvesting is improved both in short and long wavelength regions, making Jsc and Voc increase simultaneously. A champion solar cell shows a very high power conversion efficiency of 9.2% and an outstanding Jsc of 25.31 mA cm?2, which are among the highest values for all solution‐processed CdTe NC solar cells with a superstrate structure, and the latter value is even higher than that of traditional thick CdTe thin‐film solar cells (2 µm) via the high temperature close space sublimation method. This work demonstrates that facile surface modifications in both the cathode and anode with stepped extraction and organic–inorganic hybridization are very promising in constructing next‐generation highly efficient NC photovoltaic devices.  相似文献   

19.
Bis(thiophen‐2‐yl)‐diketopyrrolopyrrole (DPP) dyes bearing various alkyl substituents at the amide positions (n‐butyl, n‐pentyl, n‐hexyl, n‐heptyl, n‐octyl, 2‐ethylhexyl) and chlorine (Cl), bromine (Br), or cyano (CN) substituents at the thiophene positions have been synthesized and investigated with regard to their molecular and semiconducting properties. Intense absorption, strong fluorescence, and reversible oxidation and reduction processes are common to all of these dyes. Their characterization as organic semiconductors in vacuum‐processed thin‐film transistors reveals p‐channel operation with field‐effect mobilities ranging from 0.01 to 0.7 cm2 V?1 s?1. The highest mobility is found for the DPP dyes bearing the 2‐ethylhexyl substituents, which is surprising, considering that as a result of the chiral substituents, this material is a mixture of (R,R), (S,S), and (R,S) stereoisomers. The high carrier mobility in the films of the DPPs bearing stereoisomerically inhomogeneous ethylhexyl groups is rationalized here by single‐crystal X‐ray diffraction (XRD) analysis in combination with XRD and atomic force microscopy studies on thin films, which reveal the presence of slightly different 2D layer arrangements for the n‐alkyl and the 2‐ethylhexyl derivatives. For the cyano‐substituted DPPs possessing the lowest LUMO levels, ambipolar transport characteristics are observed.  相似文献   

20.
Several new solution‐processable organic semiconductors based on dendritic oligoquinolines were synthesized and were used as electron‐transport and hole‐blocking materials to realize highly efficient blue phosphorescent organic light‐emitting diodes (PhOLEDs). Various substitutions on the quinoline rings while keeping the central meta‐linked tris(quinolin‐2‐yl)benzene gave electron transport materials that combined wide energy gap (>3.3 eV), moderate electron affinity (2.55‐2.8 eV), and deep HOMO energy level (<‐6.08 eV) with electron mobility as high as 3.3 × 10?3 cm2 V?1 s?1. Polymer‐based PhOLEDs with iridium (III) bis(4,6‐(di‐fluorophenyl)pyridinato‐N,C2′)picolinate (FIrpic) blue triplet emitter and solution‐processed oligoquinolines as the electron‐transport layers (ETLs) gave luminous efficiency of 30.5 cd A?1 at a brightness of 4130 cd m?2 with an external quantum efficiency (EQE) of 16.0%. Blue PhOLEDs incorporating solution‐deposited ETLs were over two‐fold more efficient than those containing vacuum‐deposited ETLs. Atomic force microscopy imaging shows that the solution‐deposited oligoquinoline ETLs formed vertically oriented nanopillars and rough surfaces that enable good ETL/cathode contacts, eliminating the need for cathode interfacial materials (LiF, CsF). These solution‐processed blue PhOLEDs have the highest performance observed to date in polymer‐based blue PhOLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号