首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a process to stamp semiconductor polymers suitable for the parallel fabrication of thin‐film transistor island arrays. This process is compatible with roll‐to‐roll fabrication. When a chemically treated elastomeric stamp is pressed against a substrate previously coated with the polymer solution, a capillary force drives the polymer solution into the stamp recesses. Simultaneously, the raised features of the stamp in contact with the substrate absorb the solvent. The resulting polymer thin film reproduces the pattern of the raised features of the stamp. Features with lateral dimensions as small as 2 μm are faithfully reproduced. We use this stamping process to fabricate arrays of polymer thin‐film transistors (TFTs) using poly(fluorene‐co‐bithiophene) and poly(thiophene) semiconductors.  相似文献   

2.
The mass production technique of gravure contact printing is used to fabricate state‐of‐the art polymer field‐effect transistors (FETs). Using plastic substrates with prepatterned indium tin oxide source and drain contacts as required for display applications, four different layers are sequentially gravure‐printed: the semiconductor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT), two insulator layers, and an Ag gate. A crosslinkable insulator and an Ag ink are developed which are both printable and highly robust. Printing in ambient and using this bottom‐contact/top‐gate geometry, an on/off ratio of >104 and a mobility of 0.04 cm2 V?1 s?1 are achieved. This rivals the best top‐gate polymer FETs fabricated with these materials. Printing using low concentration, low viscosity ink formulations, and different P3HT molecular weights is demonstrated. The printing speed of 40 m min?1 on a flexible polymer substrate demonstrates that very high‐volume, reel‐to‐reel production of organic electronic devices is possible.  相似文献   

3.
The fabrication of functional multilayered conjugated‐polymer structures with well‐defined organic‐organic interfaces for optoelectronic‐device applications is constrained by the common solubility of many polymers in most organic solvents. Here, we report a simple, low‐cost, large‐area transfer‐printing technique for the deposition and patterning of conjugated‐polymer thin films. This method utilises a planar poly(dimethylsiloxane) (PDMS) stamp, along with a water‐soluble sacrificial layer, to pick up an organic thin film (~20 nm to 1 µm) from a substrate and subsequently deliver this film to a target substrate. We demonstrate the versatility of this transfer‐printing technique and its applicability to optoelectronic devices by fabricating bilayer structures of poly(9,9‐di‐n‐octylfluorene‐alt‐(1,4‐phenylene‐((4‐sec‐butylphenyl)imino)‐1,4‐phenylene))/poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) (TFB/F8BT) and poly(3‐hexylthiophene)/methanofullerene([6,6]‐phenyl C61 butyric acid methyl ester) (P3HT/PCBM), and incorporating them into light‐emitting diodes (LEDs) and photovoltaic (PV) cells, respectively. For both types of device, bilayer devices fabricated with this transfer‐printing technique show equal, if not superior, performance to either blend devices or bilayer devices fabricated by other techniques. This indicates well‐controlled organic‐organic interfaces achieved by the transfer‐printing technique. Furthermore, this transfer‐printing technique allows us to study the nature of the excited states and the transport of charge carriers across well‐defined organic interfaces, which are of great importance to organic electronics.  相似文献   

4.
Gravure printing as direct patterning roll‐to‐roll (R2R) production technology can revolutionize the design of thin‐film organic photovoltaic (OPV) devices by allowing feasible manufacturing of arbitrary‐shaped modules. This makes a distinction to coating methods, such as slot die coating, in which the pattern is limited to continuous stripes. Here, we analyze the thin‐film formation and its influence on OPV module performance as the gravure printing of hole transport and photoactive layers are transferred from laboratory to R2R pilot production environment. Insertion of a 0.8‐nm layer of lithium fluoride (LiF) as an interfacial layer between the active layer and the electron contact provided insulation against the detrimental pinholes formed in the R2R printing process. Using this device configuration, we produced well‐performing R2R‐printed monolithic modules with a mean efficiency of 1.7%. In comparison, reference modules with an efficiency of 2.2% were fabricated using laboratory‐scale bench top sheet‐level process. Surface energy and tension measurements together with optical microscopy were used to analyze the printability of the materials. The pinhole insulation was investigated in detail by processing R2R‐printed OPV modules with different interfacial layer materials and performing electrical measurements under dark and AM1.5 illumination conditions. Furthermore, we analyzed the LiF distribution using X‐ray photoelectron spectroscopy. The insulating nature of the LiF layer to improve module performance was confirmed by manufacturing lithographically artificial pinholes in device structures. The results show the possibility to loosen the production environment constraints and the feasibility of fabricating well‐performing thin‐film devices by R2R gravure printing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
With the aim of developing high-performance flexible polymer solar cells, the preparation of flexible transparent electrodes (FTEs) via a high-throughput gravure printing process is reported. By varying the blend ratio of the mixture solvent and the concentration of the silver nanowire (AgNW) inks, the surface tension, volatilization rate, and viscosity of the AgNW ink can be tuned to meet the requirements of gravure printing process. Following this method, uniformly printed AgNW films are prepared. Highly conductive FTEs with a sheet resistance of 10.8 Ω sq−1 and a high transparency of 95.4% (excluded substrate) are achieved, which are comparable to those of indium tin oxide electrode. In comparison with the spin-coating process, the gravure printing process exhibits advantages of the ease of large-area fabrication and improved uniformity, which are attributed to better ink droplet distribution over the substrate. 0.04 cm2 polymer solar cells based on gravure-printed AgNW electrodes with PM6:Y6 as the photoactive layer show the highest power conversion efficiency (PCE) of 15.28% with an average PCE of 14.75 ± 0.35%. Owing to the good uniformity of the gravure-printed AgNW electrode, the highest PCE of 13.61% is achieved for 1 cm2 polymer solar cells based on the gravure-printed FTEs.  相似文献   

6.
《Microelectronic Engineering》2007,84(5-8):877-879
Roll to roll printing has been used recently to produce organic electronics. In future, the high speed manufacturing methods offer a way to integrate electronic functions on consumer products and packages. The minimum feature sizes achieved with roll to roll printing processes, such as gravure or flexography printing, are in the range of tens of microns. Roll to roll nanoimprinting enables a way to produce submicron features at high speed. In this work we have investigated roll to roll manufacturing of submicron structures of conducting polymer using a custom made laboratory scale nanoimprinting machine. The machine combines a gravure printing unit and a nanoimprinting unit. The units can be used consecutively to pattern the web in a single pass. We present results obtained using the gravure unit to print inherently conducting polymer layer on the substrate web, followed by pattering the polymer layer using the nanoimprinting unit. Using this approach we have realised submicron features in inherently conductive polyaniline-dodecylbenzenesulfonic acid (PANI-DBSA) film.  相似文献   

7.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) grids have been successfully constructed by roll‐to‐roll compatible screen‐printing techniques and have been used as indium tin oxide (ITO)‐free anodes for flexible organic light‐emitting diodes (OLEDs). The grid‐type transparent conductive electrodes (TCEs) can adopt thicker PEDOT: PSS grid lines to ensure the conductivity, while the mesh‐like grid structure can play an important role to maintain high optical transparency. By adjusting grid periods, grid thickness and treatment of organic additives, PEDOT: PSS TCEs with high optical transparency, low sheet resistance, and excellent mechanical flexibility have been achieved. Using the screen‐printed PEDOT: PSS grids as the anodes, ITO‐free OLEDs achieved peak current efficiency of 3.40 cd A?1 at the current density of 10 mA cm?2, which are 1.56 times better than the devices with ITO glass as the anodes. The improved efficiency is attributed to the light extraction effect and improved transparency by the grid structure. The superior optoelectronic performances of OLEDs based on flexible screen‐printed PEDOT: PSS grid anodes suggest their great prospects as ITO‐free anodes for flexible and wearable electronic applications.  相似文献   

8.
Physically flexible electronics offer a wide range of benefits, including the development of next‐generation consumer electronics and healthcare products. The advancement of physical flexibility, typically achieved by the reduction of the total device thickness, including substrates and encapsulation layers, shows great promise for skin‐laminated electronics. Organic electronics—devices relying on carbon‐based materials—offer many advantages over their inorganic counterparts, including the following: significantly lower fabrication temperatures resulting in alternative fabrication techniques, including inkjet and roll‐to‐roll printing, enabling low‐cost and large‐area fabrication; biocompatibility; and spectacular physical flexibility. This article presents a review, spanning the last two decades, of organic field‐effect transistors with the total thickness of just a few microns as well as devices demonstrated in this decade with a total thickness of few hundred of nanometers. A handful of demonstrations of other organic electronic thin film devices are also presented.  相似文献   

9.
Printing semiconductor devices under ambient atmospheric conditions is a promising method for the large‐area, low‐cost fabrication of flexible electronic products. However, processes conducted at temperatures greater than 150 °C are typically used for printed electronics, which prevents the use of common flexible substrates because of the distortion caused by heat. The present report describes a method for the room‐temperature printing of electronics, which allows thin‐film electronic devices to be printed at room temperature without the application of heat. The development of π‐junction gold nanoparticles as the electrode material permits the room‐temperature deposition of a conductive metal layer. Room‐temperature patterning methods are also developed for the Au ink electrodes and an active organic semiconductor layer, which enables the fabrication of organic thin‐film transistors through room‐temperature printing. The transistor devices printed at room temperature exhibit average field‐effect mobilities of 7.9 and 2.5 cm2 V?1 s?1 on plastic and paper substrates, respectively. These results suggest that this fabrication method is very promising as a core technology for low‐cost and high‐performance printed electronics.  相似文献   

10.
The integration of fully printed transistors on low cost paper substrates compatible with roll‐to‐roll processes is demonstrated here. Printed electronics promises to enable a range of technologies on paper including printed sensors, RF tags, and displays. However, progress has been slow due to the paper roughness and ink absorption. This is solved here by employing gravure printing to print local smoothing pads that also act as an absorption barrier. This innovative local smoothing process retains desirable paper properties such as foldability, breathability, and biodegradability outside of electronically active areas. Atomic force microscopy measurements show significant improvements in roughness. The polymer ink and printing parameters are optimized to minimize ink absorption and printing artifacts when printing the smoothing layer. Organic thin film transistors (OTFT) are fabricated on top of this locally smoothed paper. OTFTs exhibit performance on par with previously reported printed transistors on plastic utilizing the same materials system (pBTTT semiconductor, poly‐4‐vinylphenol dielectric). OTFTs deliver saturation mobility approaching 0.1 cm2V–1s–1 and on‐off‐ratio of 3.2 × 104. This attests to the quality of the local smoothing, and points to a promising path for realizing electronics on paper.  相似文献   

11.
Charge carrier transport in organic electronic devices is influenced by the crystalline microstructure and morphology of the organic semiconductor film. Evaporation behavior during drying plays a vital role in controlling the film morphology and the distribution of solute in inkjet‐printed films. On p. 229, Kilwon Cho and co‐workers demonstrate the influence of the evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of inkjet‐printed 6,13‐bis((triisopropylsilylethynyl) pentacene. The results provide an excellent method for direct‐write fabrication of high‐performance organic electronics. We have demonstrated the influence of evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of an ink‐jet‐printed organic semiconductor, 6,13‐bis((triisopropylsilylethynyl) pentacene (TIPS_PEN), by varying the composition of the solvent mixture. The ringlike deposits induced by outward convective flow in the droplets have a randomly oriented crystalline structure. The addition of dichlorobenzene as an evaporation control agent results in a homogeneous film morphology due to slow evaporation, but the molecular orientation of the film is undesirable in that it is similar to that of the ring‐deposited films. However, self‐aligned TIPS_PEN crystals with highly ordered crystalline structures were successfully produced when dodecane was added. Dodecane has a high boiling point and a low surface tension, and its addition to the solvent results in a recirculation flow in the droplets that is induced by a Marangoni flow (surface‐tension‐driven flow), which arises during the drying processes in the direction opposite to the convective flow. The field‐effect transistors fabricated with these self‐aligned crystals via ink‐jet printing exhibit significantly improved performance with an average effective field‐effect mobility of 0.12 cm2 V–1 s–1. These results demonstrate that with the choice of appropriate solvent ink‐jet printing is an excellent method for the production of organic semiconductor films with uniform morphology and desired molecular orientation for the direct‐write fabrication of high‐performance organic electronics.  相似文献   

12.
We have demonstrated the influence of evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of an ink‐jet‐printed organic semiconductor, 6,13‐bis((triisopropylsilylethynyl) pentacene (TIPS_PEN), by varying the composition of the solvent mixture. The ringlike deposits induced by outward convective flow in the droplets have a randomly oriented crystalline structure. The addition of dichlorobenzene as an evaporation control agent results in a homogeneous film morphology due to slow evaporation, but the molecular orientation of the film is undesirable in that it is similar to that of the ring‐deposited films. However, self‐aligned TIPS_PEN crystals with highly ordered crystalline structures were successfully produced when dodecane was added. Dodecane has a high boiling point and a low surface tension, and its addition to the solvent results in a recirculation flow in the droplets that is induced by a Marangoni flow (surface‐tension‐driven flow), which arises during the drying processes in the direction opposite to the convective flow. The field‐effect transistors fabricated with these self‐aligned crystals via ink‐jet printing exhibit significantly improved performance with an average effective field‐effect mobility of 0.12 cm2 V–1 s–1. These results demonstrate that with the choice of appropriate solvent ink‐jet printing is an excellent method for the production of organic semiconductor films with uniform morphology and desired molecular orientation for the direct‐write fabrication of high‐performance organic electronics.  相似文献   

13.
The high‐precision deposition of highly crystalline organic semiconductors by inkjet printing is important for the production of printed organic transistors. Herein, a facile nonconventional lithographic patterning technique is developed for fabricating banks with microwell structures by inkjet printing solvent droplets onto a polymer layer, thereby locally dissolving the polymer to form microwells. The semiconductor ink is then inkjet‐printed into the microwells. In addition to confining the inkjet‐printed organic semiconductor droplets, the microwells provide a platform onto which organic semiconductor molecules crystallize during solvent evaporation. When printed onto the hydrophilic microwells, the inkjet‐printed 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS_PEN) molecules undergo self‐organization to form highly ordered crystalline structures as a result of contact line pinning at the top corner of the bank and the outward hydrodynamic flow within the drying droplet. By contrast, small crystallites form with relatively poor molecular ordering in the hydrophobic microwells as a result of depinning of the contact line along the walls of the microwells. Because pinning in the hydrophilic microwells occurred at the top corner of the bank, treating the surfaces of the dielectric layer with a hydrophobic organic layer does not disturb the formation of the highly ordered TIPS_PEN crystals. Transistors fabricated on the hydrophilic microwells and the hydrophobic dielectric layer exhibit the best electrical properties, which is explained by the solvent evaporation and crystallization characteristics of the organic semiconductor droplets in the microwell. These results indicate that this technique is suitable for patterning organic semiconductor deposits on large‐area flexible substrates for the direct‐write fabrication of high‐performance organic transistors.  相似文献   

14.
All‐organic active matrix addressed displays based on electrochemical smart pixels made on flexible substrates are reported. Each individual smart pixel device combines an electrochemical transistor with an electrochromic display cell, thus resulting in a low‐voltage operating and robust display technology. Poly(3,4‐ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) served as the active material in the electrochemical smart pixels, as well as the conducting lines, of the monolithically integrated active‐matrix display. Different active‐matrix display addressing schemes have been investigated and a matrix display fill factor of 65 % was reached. This is achieved by combining a three‐terminal electrochemical transistor with an electrochromic display cell architecture, in which an additional layer of PEDOT:PSS was placed on top of the display cell counter electrode. In addition, we have evaluated different kinds of electrochromic polymer materials aiming at reaching a high color switch contrast. This work has been carried out in the light of achieving a robust display technology that is easily manufactured using a standard label printing press, which forced us to use the fewest different materials as well as avoiding exotic and complex device architectures. Together, this yields a manufacturing process of only five discrete patterning steps, which in turn promise for that the active matrix addressed displays can be manufactured on paper or plastic substrates in a roll‐to‐roll production procedure.  相似文献   

15.
Silver nanowires (AgNWs) and zinc oxide (ZnO) are deposited on flexible substrates using fast roll‐to‐roll (R2R) processing. The AgNW film on polyethylene terephthalate (PET) shows >80% uniform optical transmission in the range of 550–900 nm. This electrode is compared to the previously reported and currently widely produced indium‐tin‐oxide (ITO) replacement comprising polyethylene terephthalate (PET)|silver grid|poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)|ZnO known as Flextrode. The AgNW/ZnO electrode shows higher transmission than Flextrode above 490 nm in the electromagnetic spectrum reaching up to 40% increased transmission at 750 nm in comparison to Flextrode. The functionality of AgNW electrodes is demonstrated in single and tandem polymer solar cells and compared with parallel devices on traditional Flextrode. All layers, apart from the semitransparent electrodes which are large‐scale R2R produced, are fabricated in ambient conditions on a laboratory roll‐coater using printing and coating methods which are directly transferrable to large‐scale R2R processing upon availability of materials. In a single cell structure, Flextrode is preferable with active layers based on poly‐3‐hexylthiophene(P3HT):phenyl‐C61‐butyric acid methylester (PCBM) and donor polymers of similar absorption characteristics while AgNW/ZnO electrodes are more compatible with low band gap polymer‐based single cells. In tandem devices, AgNW/ZnO is more preferable resulting in up to 80% improvement in PCE compared to parallel devices on Flextrode.  相似文献   

16.
Fabrication of organic field‐effect transistors (OFETs) using a high‐throughput printing process has garnered tremendous interest for realizing low‐cost and large‐area flexible electronic devices. Printing of organic semiconductors for active layer of transistor is one of the most critical steps for achieving this goal. The charge carrier transport behavior in this layer, dictated by the crystalline microstructure and molecular orientations of the organic semiconductor, determines the transistor performance. Here, it is demonstrated that an inkjet‐printed single‐droplet of a semiconducting/insulating polymer blend holds substantial promise as a means for implementing direct‐write fabrication of organic transistors. Control of the solubility of the semiconducting component in a blend solution can yield an inkjet‐printed single‐droplet blend film characterized by a semiconductor nanowire network embedded in an insulating polymer matrix. The inkjet‐printed blend films having this unique structure provide effective pathways for charge carrier transport through semiconductor nanowires, as well as significantly improve the on‐off current ratio and the environmental stability of the printed transistors.  相似文献   

17.
Conjugated electrochromic (EC) polymers for flexible EC devices (ECDs) generally lack a fully colorless bleached state. A strategy to overcome this drawback is the implementation of a new sidechain‐modified poly(3,4‐ethylene dioxythiophene) derivative that can be deposited in thin‐film form in a customized high‐throughput and large‐area roll‐to‐roll polymerization process. The sidechain modification provides enhanced EC properties in terms of visible light transmittance change, Δτv = 59% (ΔL* = 54.1), contrast ratio (CR = 15.8), coloration efficiency (η = 530 cm² C?1), and color neutrality (L* = 83.8, a* = ?4.3, b* = ?4.1) in the bleached state. The intense blue‐colored polymer thin films exhibit high cycle stability (10 000 cycles) and fast response times. The design, synthesis, and polymerization of the modified 3,4‐ethylene dioxythiophene derivative are discussed along with a detailed optical, electrochemical, and spectroelectrochemical characterization of the resulting EC thin films. Finally, a flexible see‐through ECD with a visible light transmittance change of Δτv = 47% (ΔL* = 51.9) and a neutral‐colored bleached state is developed.  相似文献   

18.
Large‐area, ultrathin light‐emitting devices currently inspire architects and interior and automotive designers all over the world. Light‐emitting electrochemical cells (LECs) and quantum dot light‐emitting diodes (QD‐LEDs) belong to the most promising next‐generation device concepts for future flexible and large‐area lighting technologies. Both concepts incorporate solution‐based fabrication techniques, which makes them attractive for low cost applications based on, for example, roll‐to‐roll fabrication or inkjet printing. However, both concepts have unique benefits that justify their appeal. LECs comprise ionic species in the active layer, which leads to the omission of additional organic charge injection and transport layers and reactive cathode materials, thus LECs impress with their simple device architecture. QD‐LEDs impress with purity and opulence of available colors: colloidal quantum dots (QDs) are semiconducting nanocrystals that show high yield light emission, which can be easily tuned over the whole visible spectrum by material composition and size. Emerging technologies that unite the potential of both concepts (LEC and QD‐LED) are covered, either by extending a typical LEC architecture with additional QDs, or by replacing the entire organic LEC emitter with QDs or perovskite nanocrystals, still keeping the easy LEC setup featured by the incorporation of mobile ions.  相似文献   

19.
The use of biomaterials and bioinspired concepts in electronics will enable the fabrication of transient and disposable technologies within areas ranging from smart packaging and advertisement to healthcare applications. In this work, the use of a nonhalogenated biodegradable solid polymer electrolyte based on poly(ε‐caprolactone‐co‐trimethylene carbonate) and tetrabutylammonium bis‐oxalato borate in light‐emitting electrochemical cells (LECs) is presented. It is shown that the spin‐cast devices exhibit current efficiencies of ≈2 cd A?1 with luminance over ≈12 000 cd m?2, an order of magnitude higher than previous bio‐based LECs. By a combination of industrially relevant techniques (i.e., inkjet printing and blade coating), the fabrication of LEC devices on a cellulose‐based flexible biodegradable substrate showing lifetimes compatible with transient applications is demonstrated. The presented results have direct implications toward the industrial manufacturing of biomaterial‐based light‐emitting devices with potential use in future biodegradable/biocompatible electronics.  相似文献   

20.
A high-performance/flexible organic thin-film transistor (OTFT) is fabricated by using all-step solution processes, which are composed of roll-to-roll gravure, plate-to-roll gravure and inkjet printing with the least process number of 5. Roll-to-roll gravure printing is used to pattern source/drain electrodes on plastic substrate while semiconductor and dielectric layers are printed by consecutive plate-to-roll gravure printing. Finally, inkjet printing of Ag organometallic ink is used to pattern the gate electrode. The fabricated OTFT exhibits excellent electrical performance, field-effect mobility over 0.2 cm2/Vs, which is one of the best compared to the previous works. The deposition of a self-assembled monolayer on the source-drain electrodes results in a higher work function which is suitable for a p-type polymer semiconductor. Moreover, the formation of dense gate electrode line on hydrophobic dielectric is achieved by selecting suitable Ag ink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号