首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we introduce a new wireless system architecture using space‐time block coding schemes (STBC) and non‐orthogonal multiple access (NOMA) in millimeter wave (mmWave) large‐scale MIMO systems. The proposed STBC mmWave large‐scale MIMO‐NOMA system utilizes two MIMO subarrays, transmitting data over two channel vectors to mobile users. To reduce the communication overhead and latency in the system, we utilize random beamforming with optimal coefficients at the base station and random‐near random‐far user pairing in implementing the NOMA scheme. Our results show that the proposed STBC mmWave large‐scale MIMO‐NOMA technique significantly outperforms the previous counterparts.  相似文献   

2.
Millimeter-wave (mmWave) transmissions are promising technologies for high data rate (multi-Gbps) Wireless Personal Area Networks (WPANs). In this paper, we first introduce the concept of exclusive region (ER) to allow concurrent transmissions to explore the spatial multiplexing gain of wireless networks. Considering the unique characteristics of mmWave communications and the use of omni-directional or directional antennae, we derive the ER conditions which ensure that concurrent transmissions can always outperform serial TDMA transmissions in a mmWave WPAN. We then propose REX, a randomized ER based scheduling scheme, to decide a set of senders that can transmit simultaneously. In addition, the expected number of flows that can be scheduled for concurrent transmissions is obtained analytically. Extensive simulations are conducted to validate the analysis and demonstrate the effectiveness and efficiency of the proposed REX scheduling scheme. The results should provide important guidelines for future deployment of mmWave based WPANs.  相似文献   

3.
The directional neighbor discovery problem, i.e., spatial rendezvous, is a fundamental problem in millimeter wave (mmWave) wireless networks, where directional transmissions are used to overcome the high attenuation. The challenge is how to let the transmitter and the receiver beams meet in space under deafness caused by directional transmission and reception, where no control channel, prior information, and coordination are available. In this paper, we present a Hunting-based Directional Neighbor Discovery (HDND) scheme for ad hoc mmWave networks, where a node follows a unique sequence to determine its transmission or reception mode, and continuously rotates its directional beam to scan the neighborhood for other mmWave nodes. Through a rigorous analysis, we derive the conditions for ensured neighbor discovery, as well as a bound for the worst-case discovery time and the impact of sidelobes. We validate the analysis with extensive simulations and demonstrate the superior performance of the proposed scheme over several baseline schemes.  相似文献   

4.
The proliferation of wireless transceivers and the availability of the unlicensed band has given a boost to the deployment of wireless networks, with IEEE802.11/WiFi being the major driver in this arena. In this research, we consider a wireless mesh network designed for long‐distance communication with a typical deployment scenario of a maritime mesh network. This network uses an antenna system made up of multiple fixed‐beamwidth antennas. Compared to most other directional antenna schemes which use directional antenna for transmission and omni‐directional antenna for reception, our system uses directional antennas for both transmission and reception where a pair of transmitter–receiver antennas needs to be aligned and have an acceptable channel quality before transmission can take place. Through efficient use of directional antennas for both transmission and reception, and spatial reuse in transmission, we are able to realize a high‐capacity mesh network. In this paper, we present a practical approach to achieve contention‐free medium access, namely, a measurement‐based link‐scheduling algorithm. We evaluate the performance of the link‐scheduling algorithm using simulations and show that it is able to exploit the spatial diversity provided by the directional antennas to outperform comparable schemes for wireless mesh networks. We also briefly discuss implementation issues to demonstrate the viability of the approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
There is an increasing interest in 60 GHz millimeter-wave (mmWave) communication technologies for multi-Gigabit wireless personal area networks (WPAN), aiming to support broadband multimedia applications. Internet Protocol TV (IPTV) is an emerging killer application which requires high data rate and stringent quality of services (QoS) in terms of delay and packet loss. In this paper, we propose a method to efficiently support high definition video flows in a mmWave-based WPAN with QoS guarantee, considering the characteristics of both the IPTV traffic and the mmWave communication technology. We first quantify the effective bandwidth of IPTV video sources using a simple, two-level Markov traffic model. Considering the overheads of the protocol stack in mmWave WPANs, we then quantify the minimum channel time needed for each IPTV flow. Since mmWave-based WPANs will deploy directional antennas to not only extend the transmission range, but also reduce the interference level to neighboring flows, we further propose an admission control scheme and scheduling algorithm to improve the network resource utilization by taking advantage of concurrent transmissions. Extensive simulations with NS-2 using real video traces have validated our analysis and demonstrated the efficiency and effectiveness of the proposed schemes, which will be an enabling technology for future mmWave-based WPANs supporting IPTV services. Part of this work was presented at 2008 Int. Conf. Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine’08), Hong Kong, July 2008. This work has been supported by research grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada.  相似文献   

6.
The millimeter‐wave (mmWave) band offers the potential for multi‐gigabit indoor wireless personal area networks (WPANs). However, there are problems such as the short wavelength and high propagation losses. In order to compensate for these, it is highly recommended to use directional antennas at the physical layer. In this paper, directional carrier sense multiple access/collision avoidance (CSMA/CA) is analyzed in IEEE 802.15.3c, a standard for mmWave WPANs, under a saturated environment. A Markov chain model is presented and analyzed for the no‐acknowledgment (No‐ACK) mode. For the analysis, the device interaction is considered using directional antennas over a shared channel. A Markov chain model is presented in which the features of IEEE 802.15.3c such as backoff counter freezing and the effects of using directional antennas are incorporated. The maximal number of frames that can be transmitted concurrently and successfully is derived by an algorithm, and the system throughput and the average transmission delay are obtained in the closed forms. Numerical results show that the effects of using directional antennas in CSMA/CA and the overall analysis are verified by the simulation. The obtained results illustrate the physical layer impact on the CSMA/CA medium access control protocol, and these insights can be helpful in developing a medium access control protocol for enhancing the performance of mmWave WPANs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
《Ad hoc Networks》2007,5(2):145-161
Directional antennas have the potential to significantly improve the throughput of a wireless ad hoc network. At the same time, energy consumption can be considerably reduced if the network implements per-packet transmission power control. Typical MAC protocols for ad hoc networks (e.g., the IEEE 802.11 Ad Hoc mode) were designed for wireless devices with omnidirectional antennas. When used with directional antennas, such protocols suffer from several medium access problems, including interference from minor lobes and hidden-terminal problems, which prevent full exploitation of the potential of directional antennas. In this paper, we propose a power-controlled MAC protocol for directional antennas that ameliorates these problems. Our protocol allows for dynamic adjustment of the transmission power for both data and clear-to-send (CTS) packets to optimize energy consumption. It provides a mechanism for permitting interference-limited concurrent transmissions and choosing the appropriate tradeoff between throughput and energy consumption. The protocol enables nodes to implement load control in a distributed manner, whereby the total interference in the neighborhood of a receiver is upper-bounded. Simulation results demonstrate that the combined gain from concurrent transmissions using directional antennas and power control results in significant improvement in network throughput and considerable reduction in energy consumption.  相似文献   

8.
Directional antennas are a promising technology for use in mobile ad hoc environments. By consuming smaller volumes than omni directional antennas, directional antennas enable significant increases in network capacity by allowing more simultaneous transmissions to occur within a multihop wireless network. In this paper, we present some of the challenges that face asynchronous directional channel access schemes and describe how these problems can be avoided by taking a synchronous approach. We describe a communications system architecture that enables modestly directional sectored antennas to be effectively exploited in a mobile ad hoc environment. A key part of this architecture is the Directional Synchronous Unscheduled Multiple Access (DSUMA) protocol. By making intelligent decisions regarding the enabling/disabling of sector antennas, DSUMA provides an increased density of transmissions while insuring that collisions do not occur. Our results indicate how the number of sectors per node affects performance in terms of spatial reuse, the likelihood of collisions, and overall network capacity.  相似文献   

9.
This paper proposes a new cross‐layer optimization algorithm for wireless mesh networks (WMNs). CDMA/TDD (code division multiple access/time division duplex) is utilized and a couple of TDD timeslot scheduling schemes are proposed for the mesh network backbone. Cross‐layer optimization involves simultaneous consideration of the signal to interference‐plus‐noise ratio (SINR) at the physical layer, traffic load estimation and allocation at medium access control (MAC) layer, and routing decision at the network layer. Adaptive antennas are utilized by the wireless mesh routers to take advantage of directional beamforming. The optimization formulation is subject to routing constraints and can be solved by general nonlinear optimization techniques. Comparisons are made with respect to the classic shortest‐path routing algorithm in the network layer. The results reveal that the average end‐to‐end successful packet rate (SPR) can be significantly improved by the cross‐layer approach. The corresponding optimized routing decisions are able to reduce the traffic congestion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we propose a new Medium Access Control (MAC) protocol for full exploitation of directional antennas in wireless networks. The protocol introduces a circular directional transmission of the Request To Send (RTS) control packet, spreading around a station information about the intended communication. The stations that receive the directional RTS, using a simple scheme of tracking the neighbors' directions, defer their transmission toward the beams that could harm the ongoing communication. In this way, the proposed protocol takes advantage of the benefits of directional transmissions as the increase of spatial reuse and of coverage range. Additionally, it reduces the hidden-terminal problem, as well as the deafness problem, two main factors for the decrease of the efficiency of directional transmissions in ad hoc networks. The performance evaluation of the protocol shows that it offers a significant improvement in static, as well as mobile, scenarios, as compared to the performance of the proposed protocols that use omnidirectional or directional transmissions.  相似文献   

11.
In this work, we introduce a priority‐aware deterministic access protocol called Vehicular Deterministic Access (VDA). VDA is based on 802.11p/DSRC and allows vehicles to access the shared medium in collision‐free periods. Particularly, VDA supports two types of safety services (emergency and routine safety messages) with different priorities and strict requirements on delay. To avoid long delays and high packet collisions, VDA allows vehicles to access the wireless medium at selected times with a lower contention than would otherwise be possible within a two‐hop neighborhood by the classical 802.11p Enhanced Distributed Channel Access or Distributed Coordination Function schemes. A non‐VDA‐enabled vehicle, that is, a vehicle not configured with the optional VDA capability over 802.11p, may start transmitting on the shared channel just before or during the VDA opportunities reserved for vehicles with VDA capabilities. To avoid the aforementioned issues and prevent interfering transmissions from VDA‐enabled vehicles and non‐VDA‐enabled vehicles, we also proposed a novel scheme called extended VDA. We analyzed the impact of several design tradeoffs between the contention free period/contention period dwell time ratios on the performance of safety applications with different priorities for VDA and extended VDA. Simulations show that the proposed schemes clearly outperform the backoff‐based schemes currently used by 802.11p in high communication density conditions while bounding the transmission delay of safety messages and increasing the packet reception rate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents an analysis of resource assignment for multihop communications in millimeter‐wave (mm‐wave) wireless personal area networks. The purpose of this paper is to figure out the effect of using directional antennas and relaying devices (DEVs) in communications. The analysis is performed based on a grouping algorithm, categorization of the flows, and the relaying DEV selection policy. Three schemes are compared: direct and relaying concurrent transmission (DRCT), direct concurrent transmission (DCT), and direct nonconcurrent transmission (DNCT). Numerical results show that DRCT is better than DCT and DCT is better than DNCT for any antenna beamwidths under the proposed algorithm and policy. The results also show that using relaying DEVs increases the throughput up to 30% and that there is an optimal beamwidth that maximizes spatial reuse and depends on parameters such as the number of flows in the networks. This analysis can provide guidelines for improving the performance of mm‐wave band communications with relaying DEVs.  相似文献   

13.
Wireless Mesh Networks (WMNs) have emerged recently as a technology for providing high‐speed last mile connectivity in next‐generation wireless networks. Several MAC protocols that exploit multiple channels and directional antennas have been proposed in the literature to increase the performance of WMNs. However, while these techniques can improve the wireless medium utilization by reducing radio interference and the impact of the exposed nodes problem, they can also exacerbate the hidden nodes problem. Therefore, efficient MAC protocols need to be carefully designed to fully exploit the features offered by multiple channels and directional antennas. In this paper we propose a novel Multi‐Channel Power‐Controlled Directional MAC protocol (MPCD‐MAC) for nodes equipped with multiple network interfaces and directional antennas. MPCD‐MAC uses the standard RTS‐CTS‐DATA‐ACK exchange procedure. The novel difference is the transmission of the RTS and CTS packets in all directions on a separate control channel, while the DATA and ACK packets are transmitted only directionally on an available data channel at the minimum required power, taking into account the interference generated on already active connections. This solution spreads the information on wireless medium reservation (RTS/CTS) to the largest set of neighbors, while data transfers take place directionally on separate channels to increase spatial reuse. Furthermore, power control is used to limit the interference produced over active nodes. We measure the performance of MPCD‐MAC by simulation of several realistic network scenarios, and we compare it with other approaches proposed in the literature. The results show that our scheme increases considerably both the total traffic accepted by the network and the fairness among competing connections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The present development of high data rate wireless applications has led to extra bandwidth demands. However, finding a new spectrum bandwidth to accommodate these applications and services is a challenging task because of the scarcity of spectrum resources. In fact, the spectrum is utilized inefficiently for conventional spectrum allocation, so Federal Communications Commission has proposed dynamic spectrum access mechanism in cognitive radio, where unlicensed users can opportunistically borrow unused licensed spectrum, which is a challenge to obtain contiguous frequency spectrum block. This also has a significant impact on multicarrier transmission systems such as orthogonal frequency division multiplexing (OFDM) and multicarrier code division multiple access (MC‐CDMA). As a solution, this paper develops non‐contiguous OFDM (NC‐OFDM) and non‐contiguous MC‐CDMA (NC‐MC‐CDMA) cognitive system. The implementation of NC‐OFDM and NC‐MC‐CDMA systems provides high data rate via a large number of non‐contiguous subcarriers without interfering with the existing transmissions. The system performance evaluates NC‐OFDM and NC‐MC‐CDMA for mobile scenario where each propagation path will experience Doppler frequency shift because of the relative motion between the transmitter and receiver. The simulation results of this paper proved that NC‐OFDM system is a superior candidate than NC‐MC‐CDMA system considering the mobility for cognitive users. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Broadcast is an essential operation in wireless sensor networks. Because of the necessity of energy conservation, minimizing the number of transmissions is always a challenging issue in broadcasting scheme design. This paper studies the minimum‐transmission broadcast problem in duty‐cycled wireless sensor networks where each sensor operates under active/dormant cycles. To address the problem, our proposed scheme, Broadcast Redundancy Minimization Scheduling (BRMS), finds a set of forwarding nodes, which minimizes the number of broadcast transmissions. Then, it constructs a forest of sub‐trees based on the relationship between each forwarding node and its corresponding receivers. A broadcast tree is constructed ultimately by connecting all sub‐trees with a minimum number of connectors. Theoretical analysis shows that BRMS obtains a lower approximation ratio as well as time complexity compared with existing schemes. A set of extensive simulations is conducted to evaluate the performance of BRMS. The results reveal that BRMS outperforms others and its solution is close to the lower bound of the problem in terms of the total number of transmissions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Given a video/audio streaming system installed on a multichannel multiradio wireless mesh network, we are interested in a problem concerning about how to construct a delay‐constrained multicast tree to support concurrent interference‐free transmissions so that the number of serviced mesh clients is maximized. In this paper, we propose a heuristic approach called cross‐layer and load‐oriented (CLLO) algorithm for the problem. On the basis of the cross‐layer design paradigm, our CLLO algorithm can consider application demands, multicast routing, and channel assignment jointly during the formation of a channel‐allocated multicast tree. The experimental results show that the proposed CLLO outperforms the layered approaches in terms of the number of serviced mesh clients and throughputs. This superiority is due to information from higher layers can be used to guide routing selection and channel allocation at the same time. As a result, the CLLO algorithm can explore more solution spaces than the traditional layered approaches. In addition to that, we also propose a channel adjusting procedure to enhance the quality of channel‐allocated multicast trees. According to our simulations, it is proved to be an effective method for improving the performance of the proposed CLLO algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Using directional antennas to reduce interference and improve throughput in multihop wireless networks has attracted much attention from the research community in recent years. In this paper, we consider the issue of minimum delay broadcast in multirate wireless mesh networks using directional antennas. We are given a set of mesh routers equipped with directional antennas, one of which is the gateway node and the source of the broadcast. Our objective is to minimize the total transmission delay for all the other nodes to receive a broadcast packet from the source, by determining the set of relay nodes and computing the number and orientations of beams formed by each relay node. We propose a heuristic solution with two steps. Firstly, we construct a broadcast routing tree by defining a new routing metric to select the relay nodes and compute the optimal antenna beams for each relay node. Then, we use a greedy method to make scheduling of concurrent transmissions without causing beam interference. Extensive simulations have demonstrated that our proposed method can reduce the broadcast delay significantly compared with the methods using omnidirectional antennas and single‐rate transmission. In addition, the results also show that our method performs better than the method with fixed antenna beams. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The directional antennas and beamforming techniques in millimeter wave (mmWave) bands are used to make concurrent transmission between multiple flows become possible.However,higher mutual interference may be caused by concurrent transmission.Therefore,when the time slots were limited and the number of data flows was large,how to schedule the concurrent flows efficiently was solved by proposed algorithm.The contention graph based spatial-time division multiple access (CB-STDMA) concurrent scheduling algorithm guaranteed the quality of service (QoS) of users,and aimed at maximizing the number of flows with their QoS requirements satisfied.It considered the interference between different flows,and a higher priority was given to the flow with fewer time slots requirement.Extensive simulations demonstrated that the proposed CB-STDMA algorithm increased the number of flows with their QoS requirements satisfied and the network throughput by 50% and 20% respectively compared with the existing algorithms.  相似文献   

19.
In this paper, we consider a resource allocation scheme for millimeter wave–based wireless personal area networks using directional antennas. This scheme involves scheduling the reservation period of medium access control for IEEE 802.15.3c. Objective functions are considered to minimize the average delay and maximize throughput; and two scheduling algorithms—namely, MInMax concurrent transmission and MAxMin concurrent transmission—are proposed to provide a suboptimal solution to each objective function. These are based on an exclusive region and two decision rules that determine the length of reservation times and the transmission order of groups. Each group consists of flows that are concurrently transmittable via spatial reuse. The algorithms appropriately apply two decision rules according to their objectives. A real video trace is used for the numerical results, which show that the proposed algorithms satisfy their objectives. They outperform other schemes on a range of measures, showing the effect of using a directional antenna. The proposed scheme efficiently supports variable bit rate traffic during the reservation period, reducing resource waste.  相似文献   

20.
The application of directional antennas in wireless ad hoc networks offers numerous benefits, such as the extended communication range, the increased spatial reuse, the improved capacity and the suppressed interference. However, directional antennas can cause new location-dependent carrier sensing problems, such as new hidden terminal and deafness problems, which can severely degrade the network performance. Recently, a few schemes have been proposed to address these problems. However, most of these existing methods can only partially solve the hidden terminal and deafness problems. Some of them even bring significant performance overhead. In this paper, we propose a novel MAC protocol, in terms of the busy-tone based directional medium access control (BT-DMAC) protocol. In BT-DMAC, when the transmission is in progress, the sender and the receiver will turn on their omni-directional busy tones to protect the on-going transmission. Integrating with the directional network allocation vector (DNAV), the scheme can almost mitigate the hidden terminal problem and the deafness problem completely. We then propose an analytical model to investigate the throughput performance of BT-DMAC. The numerical results show that BT-DMAC outperforms other existing directional MAC schemes. We next evaluate the performance of BT-DMAC through extensive simulation experiments. The results show that our proposed BT-DMAC scheme has superior performance to other existing solutions, in terms of higher throughput.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号