首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Work function modification by polyelectrolytes and tertiary aliphatic amines is found to be due to the formation of a net dipole at the electrode interface, induced by interaction with its own image dipole in the electrode. In polyelectrolytes differences in size and side groups between the moving ions lead to differences in approach distance towards the surface. These differences determine magnitude and direction of the resulting dipole. In tertiary aliphatic amines the lone pairs of electrons are anticipated to shift towards their image when close to the interface rather than the nitrogen nuclei, which are sterically hindered by the alkyl side chains. Data supporting this model is from scanning Kelvin probe microscopy, used to determine the work function modification by thin layers of such materials on different substrates. Both reductions and increases in work function by different materials are found to follow a general mechanism. Work function modification is found to only take place when the work function modification layer (WML) is deposited on conductors or semiconductors. On insulators no effect is observed. Additionally, the work function modification is independent of the WML thickness or the substrate work function in the range of 3 to 5 eV. Based on these results charge transfer, doping, and spontaneous dipole orientation are excluded as possible mechanisms. This understanding of the work function modification by polyelectrolytes and amines facilitates design of new air‐stable and solution‐processable WMLs for organic electronics.  相似文献   

11.
12.
13.
High‐performance ternary organic solar cells are fabricated by using a wide‐bandgap polymer donor (bithienyl‐benzodithiophene‐alt‐fluorobenzotriazole copolymer, J52) and two well‐miscible nonfullerene acceptors, methyl‐modified nonfullerene acceptor (IT‐M) and 2,2′‐((2Z ,2′Z )‐((5,5′‐(4,4,9,9‐tetrakis(4‐hexylphenyl)‐4,9‐dihydros‐indaceno[1,2‐b :5,6‐b ′]dithiophene‐2,7‐diyl)bis(4‐((2‐ethylhexyl)oxy)thiophene‐5,2‐diyl))bis(methanylylidene))bis(3‐oxo‐2,3‐dihydro‐1H ‐indene‐2,1‐diylidene))dimalononitrile (IEICO). The two acceptors with complementary absorption spectra and similar lowest unoccupied molecular orbital levels show excellent compatibility in the blend due to their very similar chemical structures. Consequently, the obtained ternary organic solar cells (OSC) exhibits a high efficiency of 11.1%, with an enhanced short‐circuit current density of 19.7 mA cm?2 and a fill factor of 0.668. In this ternary system, broadened absorption, similar output voltages, and compatible morphology are achieved simultaneously, demonstrating a promising strategy to further improve the performance of ternary OSCs.  相似文献   

14.
15.
16.
Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4‐Butanediamine (BEA)‐based low‐dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single‐crystal X‐ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+) and monoammonium (MA+) cations in the interlayer space (B‐ACI) with the formula (BEA)0.5MAn PbnI3n+1. Compared to the typical LDRP counterparts, these B‐ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B‐ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier‐free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5MA3Pb3I10 and 17.39% for (BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10 without hysteresis. Furthermore, the triple cations B‐ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h.  相似文献   

17.
Dye‐sensitized solar cells (DSSCs) have attracted widespread attention in recent years as potential cost‐effective alternatives to silicon‐based and thin‐film solar cells. Within typical DSSCs, the counter electrode (CE) is vital to collect electrons from the external circuit and catalyze the I3? reduction in the electrolyte. Careful design of the CEs can improve the catalytic activity and chemical stability associated with the liquid redox electrolyte used in most cells. In this Progress Report, advances made by our groups in the development of CEs for DSSCs are reviewed, highlighting important contributions that promise low‐cost, efficient, and robust DSSC systems. Specifically, we focus on the design of novel Pt‐free CE catalytic materials, including design ideas, fabrication approaches, characterization techniques, first‐principle density functional theory (DFT) calculations, ab‐initio Car‐Parrinello molecular dynamics (CPMD) simulations, and stability evaluations, that serve as practical alternatives to conventional noble metal Pt electrodes. We stress the merits and demerits of well‐designed Pt‐free CEs, such as carbon materials, conductive polymers, transition metal compounds (TMCs) and their corresponding hybrids. Also, the prospects and challenges of alternative Pt catalysts for their applications in new‐type DSSCs and other catalytic fields are discussed.  相似文献   

18.
All‐solution‐processing at low temperatures is important and desirable for making printed photovoltaic devices and also offers the possibility of a safe and cost‐effective fabrication environment for the devices. Herein, an all‐solution‐processed flexible organic solar cell (OSC) using poly(3,4‐ethylenedioxythiophene):poly‐(styrenesulfonate) electrodes is reported. The all‐solution‐processed flexible devices yield the highest power conversion efficiency of 10.12% with high fill factor of over 70%, which is the highest value for metal‐oxide‐free flexible OSCs reported so far. The enhanced performance is attributed to the newly developed gentle acid treatment at room temperature that enables a high‐performance PEDOT:PSS/plastic underlying substrate with a matched work function (≈4.91 eV), and the interface engineering that endows the devices with better interface contacts and improved hole mobility. Furthermore, the flexible devices exhibit an excellent mechanical flexibility, as indicated by a high retention (≈94%) of the initial efficiency after 1000 bending cycles. This work provides a simple route to fabricate high‐performance all‐solution‐processed flexible OSCs, which is important for the development of printing, blading, and roll‐to‐roll technologies.  相似文献   

19.
The tailoring of organic systems is crucial to further extend the efficiency of charge transfer mechanisms and represents a cornerstone for molecular device technologies. However, this demands control of electrical properties and understanding of the physics behind organic interfaces. Here, a quantitative spatial overview of work function characteristics for phthalocyanine architectures on Au substrates is provided via kelvin probe microscopy. While macroscopic investigations are very informative, the current approach offers a nanoscale spatial rendering of electrical characteristics which is not possible to attain via conventional techniques. Interface dipole is observed due to the formation of charge accumulation layers in thin F16CuPc, F16CoPc, and MnPc films, displaying work functions of 5.7, 6.1, and 5.0 eV, respectively. The imaging and quantification of interface locations with significant surface potential and work function response (<0.33 eV for material thickness <1 nm) show also a dependency on the crystalline state of the organic systems. The work function mapping suggests space‐charge carrier regions of about 4 nm at the organic interface. This reveals rich spatial electric parameters and ambipolar characteristics that may drive electrical performance at device scales, opening a realm of possibilities toward the development of functional organic architectures and its applications.  相似文献   

20.
Fused‐ring electron acceptors (FREAs) have recently received intensive attention. Besides the continuing development of new FREAs, the demand for FREAs featuring good compatibility to donor materials is becoming more and more urgent, which is highly desirable for screening donor materials and achieving new breakthroughs. In this work, a new FREA is developed, ZITI , featuring an octacyclic dithienocyclopentaindenoindene central core. The core is designed by linking 2,7‐dithienyl substituents and indenoindene with small methylene groups, in which the indeno[1,2‐b]thiophene‐2‐(3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene)malononitrile part provides a large and unoccupied π‐surface. Most notably, ZITI possesses an excellent compatibility with commercially available polymer donors, delivering very high power conversion efficiencies of over 13%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号