首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐performance non‐volatile memory elements based on carbon‐nanotube‐enabled vertical field‐effect transistors (CN‐VFETs) are demonstrated. A thin crosslinking polymer layer, benzocyclobutene (BCB), on top of the gate dielectric acts as the charge storage layer. This results in a large, fully gate sweep programmable, hysteresis in the cyclic transfer curves exhibiting on/off ratios >4 orders of magnitude. The carbon nanotube random network source electrode facilitates charge injection into the charge storage layer, realizing the strong memory effect without sacrificing mobility in the vertical channel. Given their intrinsically simple fabrication and compact size CN‐VFETs could provide a path to cost‐effective, high‐density organic memory devices.  相似文献   

2.
The use of shape memory polymers is demonstrated for deformable, programmable, and shape‐memorizing micro‐optical devices. A semi‐crystalline shape memory elastomer, crosslinked poly(ethylene‐co‐vinyl acetate), is used to prepare various micro‐optic components, ranging from microlens and microprism arrays to diffraction gratings and holograms. The precise replication of surface features at the micro‐ and nanoscale and the formation of crosslinked shape memory polymer networks can be achieved in a single step via compression molding. Further deformation via hot pressing or stretching of micro‐optics formed in this manner allows manipulation of the microscopic surface features, and thus the corresponding optical properties. Due to the shape memory effect, the original surface structures and the optical properties can be recovered and the devices be reprogrammed, with excellent reversibility in the optical properties. Furthermore, arrays of transparent resistive microheaters can be integrated with deformed micro‐optical devices to selectively trigger the recovery of surface features in a spatially programmable manner, thereby providing additional capabilities in user‐definable optics.  相似文献   

3.
Organic resistive memory devices are one of the promising next‐generation data storage technologies which can potentially enable low‐cost printable and flexible memory devices. Despite a substantial development of the field, the mechanism of the resistive switching phenomenon in organic resistive memory devices has not been clearly understood. Here, the time–dependent current behavior of unipolar organic resistive memory devices under a constant voltage stress to investigate the turn‐on process is studied. The turn‐on process is discovered to occur probabilistically through a series of abrupt increases in the current, each of which can be associated with new conducting paths formation. The measured turn‐on time values can be collectively described with the Weibull distribution which reveals the properties of the percolated conducting paths. Both the shape of the network and the current path formation rate are significantly affected by the stress voltage. A general probabilistic nature of the percolated conducting path formation during the turn‐on process is demonstrated among unipolar memory devices made of various materials. The results of this study are also highly relevant for practical operations of the resistive memory devices since the guidelines for time‐widths and magnitudes of voltage pulses required for writing and reading operation can be potentially set.  相似文献   

4.
Recent advances in miniature robotics have brought promising improvements in performance by leveraging the latest developments in soft materials, new fabrication schemes, and continuum actuation. Such devices can be used for applications that need delicate manipulation such as microsurgery or investigation of small‐scale biological samples. The shape memory effect of certain alloys is one of the promising actuation mechanisms at small scales because of its high work density and simple actuation mechanism. However, for sub‐millimeter devices, it is difficult to achieve complex and large displacement with shape memory alloy actuators because of the limitation in the fabrication process. Herein, a fabrication scheme for miniaturized smart soft composite actuator is proposed by utilizing two‐photon polymerization. The morphing modes are varied by changing the direction of the scaffold lamination. In addition, the actuation is controlled via local resistive heating of a carbon nanotube layer deposited inside of the actuators. The proposed design can generate a 390 µN force and achieve a bending angle up to 80°. Applications of the actuators are demonstrated by grasping small and delicate objects with single and two finger devices.  相似文献   

5.
In recent decades, organic memory devices have been researched intensely and they can, among other application scenarios, play an important role in the vision of an internet of things. Most studies concentrate on storing charges in electronic traps or nanoparticles while memory types where the information is stored in the local charge up of an integrated capacitance and presented by capacitance received far less attention. Here, a new type of programmable organic capacitive memory called p‐i‐n‐metal‐oxide‐semiconductor (pinMOS) memory is demonstrated with the possibility to store multiple states. Another attractive property is that this simple, diode‐based pinMOS memory can be written as well as read electrically and optically. The pinMOS memory device shows excellent repeatability, an endurance of more than 104 write‐read‐erase‐read cycles, and currently already over 24 h retention time. The working mechanism of the pinMOS memory under dynamic and steady‐state operations is investigated to identify further optimization steps. The results reveal that the pinMOS memory principle is promising as a reliable capacitive memory device for future applications in electronic and photonic circuits like in neuromorphic computing or visual memory systems.  相似文献   

6.
Advances in semiconductor device during last few decades enable us to improve the electronic device performance by minimizing the device dimension. However, further development of these systems encounters scientific and technological limits and forces us to explore better alternatives. Low‐dimensional carbon allotropes such as carbon nanotube and graphene exhibit superior electronic, optoelectronic, and mechanical properties compared to the conventional semiconductors. This Feature Article reviews the recent progresses of carbon nanotubes and graphene researches and compares their electronic properties and electric device performances. A particular focus is the comparison of the characteristics in transparent conducting films (transparency and sheet resistance) and field‐effect transistors (FETs) (device types, ambipolarity, mobility, doping strategy, FET‐performance, logic and memory operations). Finally, the performance of devices that combine graphene and carbon nanotubes is also highlighted.  相似文献   

7.
Nonvolatile rewritable organic memory devices based on poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and nitrogen doped multi-walled carbon nanotube (NCNT) nanocomposites were fabricated on glass and PET substrates.Organic memory devices with bistable resistive switching were obtained using very low NCTN concentration (∼0.002 wt%) in the polymeric matrix. The memory devices exhibited a good ON/OFF ratio of approximately three orders of magnitude, a good retention time of 104 s under operating voltages ≤ |4V| and a few hundredths of write-read-erase-read cycles. The bistable resistive switching is mainly attributed to the creation of oxygen vacancies. These defects are introduced into the thin native Al oxide (AlOx) layer on the bottom electrode during the first voltage sweep. The well-dispersed NCNTs immersed in PEDOT:PSS play a key role as conductive channels for the electronic transport, hindering the electron trapping at the AlOx-polymer interface and inducing a soft dielectric breakdown of the AlOx layer. These PEDOT:PSS + NCNTs memory devices are to easy to apply in flexible low-cost technology and provide the possibility of large-scale integration.  相似文献   

8.
The synthesis and characterization of thin films of polyaniline/carbon nanotubes nanocomposites is reported, as well as their utilization as transparent electrodes in ITO‐free organic photovoltaic devices. These films are generated by interfacial synthesis, which provides them with the unique ability to be deposited onto any substrate as transparent films, thus enabling the production of flexible solar cells using substrates like PET. Very high carbon nanotube loadings can be achieved using these films without significantly affecting their transparency (≈80–90% transmittance at 550 nm). Sheet resistances as low as 300 Ω/□ are obtained using secondary polyaniline doping in the presence of carbon nanotubes. These films present excellent mechanical stability, exhibiting no lack in performance after 100 bend cycles. Flexible and completely ITO‐free organic photovoltaic devices are built using these films as transparent electrodes, and high efficiencies (up to 2.27%) are achieved.  相似文献   

9.
A straightforward roll‐to‐roll process for fabricating flexible and stretchable superaligned carbon nanotube films as transparent conducting films is demonstrated. Practical touch panels assembled by using these carbon nanotube conducting films are superior in flexibility and wearability—and comparable in linearity—to touch panels based on indium tin oxide (ITO) films. After suitable laser trimming and deposition of Ni and Au metal, the carbon nanotube film possesses excellent performance with two typical values of sheet resistances and transmittances (208 Ω □?1, 90% and 24 Ω □?1, 83.4%), which are comparable to ITO films and better than the present carbon nanotube conducting films in literature. The results provide a route to produce transparent conducting films more easily, effectively, and cheaply, an important step for realizing industrial‐scale applications of carbon nanotubes for transparent conducting films.  相似文献   

10.
We demonstrate bipolar switching of organic resistive memory devices consisting of Ag/polymer/heavily‐doped p‐type poly Si junctions in an 8 × 8 cross‐bar array structure. The bistable switching mechanism appears to be related to the formation and rupture of highly conductive paths, as shown by a direct observation of Ag metallic bridges using transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. Current images of high‐ and low‐conducting states acquired by conducting atomic force microscopy also support this filamentary switching mechanism. The filamentary formation can be described by an electrochemical redox reaction model of Ag. Our results may also be applied to other kinds of organic materials presenting similar switching properties, contributing to the optimization of device scaling or memory performance improvement.  相似文献   

11.
Heterojunctions, quantum wells, and superlattices with precise doping profiles are behind today's electronic and photonic devices based on III–V compound semiconductors such as GaAs. Currently, there is considerable interest in constructing similar artificial 3D architectures with tailored electrical and optical properties by using van der Waals junctions of low‐dimensional materials. In this study, the authors have fabricated a novel structure consisting of multiple thin (≈20 nm) layers of aligned single‐wall carbon nanotubes with dopants inserted between the layers. This “modulation‐doped” multiple‐quantum‐well structure acts as a terahertz polarizer with an ultra‐broadband working frequency range (from ≈0.2 to ≈200 THz), a high extinction ratio (20 dB from ≈0.2 to 1 THz), and a low insertion loss (<2.5 dB from ≈0.2 to 200 THz). The individual carbon nanotube films—highly aligned, densely packed, and large (2 in. in diameter)—were produced using vacuum filtration and then stacked together in the presence of dopants. This simple, robust, and cost‐effective method is applicable to the fabrication of a variety of devices relying on macroscopically 1D properties of aligned carbon nanotube assemblies.  相似文献   

12.
A flexible and transparent resistive switching memory based on a natural organic polymer for future flexible electronics is reported. The device has a coplanar structure of Mg/Ag‐doped chitosan/Mg on plastic substrate, which shows promising nonvolatile memory characteristics for flexible memory applications. It can be easily fabricated using solution processes on flexible substrates at room temperature and indicates reliable memory operations. The elucidated origin of the bipolar resistive switching behavior is attributed to trap‐related space‐charge‐limited conduction in high resistance state and filamentary conduction in low resistance state. The fabricated devices exhibit memory characteristics such as low power operation and long data retention. The proposed biocompatible memory device with transient electrodes is based on naturally abundant materials and is a promising candidate for low‐cost memory applications. Devices with natural substrates such as chitosan and rice paper are also fabricated for fully biodegradable resistive switching memory. This work provides an important step toward developing a flexible resistive switching memory with natural polymer films for application in flexible and biodegradable nanoelectronic devices.  相似文献   

13.
A novel multilevel resistive switching was observed in epoxy methacrylate resin (EMAR) and carbon nanotubes (CNTs) composite films fabricated by spin coating method. The fabricated devices demonstrated the rewritable nonvolatile memory characteristics. More significantly, the memory device based on EMAR+CNTs composite exhibits multilevel stable conductivity states with stable intermediate resistance states in response to the applied voltage. By setting different compliance current and content of CNTs in composite film, the multilevel ON-states and even the multilevel OFF-states have been observed in our memory device. As fabricated devices exhibited multilevel resistive switching with stable resistance ratio between different resistance states having good data retention and endurance characteristics. It offers a novel design strategy for solution processable multilevel data storage.  相似文献   

14.
The lamination of a high‐capacitance ion gel dielectric layer onto semiconducting carbon nanotube (CNT) thin‐film transistors (TFTs) that are bottom‐gated with a low‐capacitance polymer dielectric layer drastically reduces the operating voltage of the devices resulting from the capacitive coupling effect between the two dielectric layers sandwiching the CNT channel. As the CNT channel has a network structure, only a compact area of ion gel is required to make the capacitive coupling effect viable, unlike the planar channels of previously reported transistors that required a substantially larger area of ion gel dielectric layer to induce the coupling effect. The capacitively coupled CNT TFTs possess superlative electrical characteristics such as high carrier mobilities (42.0 cm2 (Vs)?1 for holes and 59.1 cm2 (Vs)?1 for electrons), steep subthreshold swings (160 mV dec?1 for holes and 100 mV dec?1 for electrons), and low gate leakage currents (<1 nA). These devices can be further integrated to form complex logic circuits on flexible substrates with high mechanical resilience. The layered geometry of the device coupled with scalable solution‐based fabrication has significant potential for large‐scale flexible electronics.  相似文献   

15.
Single‐walled carbon nanotube (SWNT) electrodes that are chemically and mechanically robust are fabricated using a simple drop cast method with thermal annealing and acid treatment. An electronic‐type selective decrease in sheet resistance of SWNT electrodes with HNO3 treatment is shown. Semiconducting SWNTs show a significantly higher affinity toward hole doping in comparison to metallic SWNTs; a ≈12‐fold and a ≈fivefold drop in sheet resistance, respectively. The results suggest the insignificance of the electronic type of the SWNTs for the film conductivity after hole doping. The SWNT films have been employed as transparent hole extracting electrodes in bulk heterojunction (BHJ) organic photovoltaics. Performances of the devices enlighten the fact that the electrode film morphology dominates over the electronic type of the doped SWNTs with similar sheet resistance and optical transmission. The power conversion efficiency (PCE) of 4.4% for the best performing device is the best carbon nanotube transparent electrode incorporated large area BHJ solar cell reported to date. This PCE is 90% in terms of PCEs achieved using indium tin oxide (ITO) based reference devices with identical film fabrication parameters indicating the potential of the SWNT electrodes as an ITO replacement toward realization of all carbon solar cells.  相似文献   

16.
Volatile threshold switching (TS) and non‐volatile memory switching (MS) are two typical resistive switching (RS) phenomena in oxides, which could form the basis for memory, analog circuits, and neuromorphic applications. Interestingly, TS and MS can be coexistent and converted in a single device under the suitable external excitation. However, the origin of the transition from TS to MS is still unclear due to the lack of direct experimental evidence. Here, conversion between TS and MS induced by conductive filament (CF) morphology in Ag/SiO2/Pt device is directly observed using scanning electron microscopy and high‐resolution transmission electron microscopy. The MS mechanism is related to the formation and dissolution of CF consisting of continuous Ag nanocrystals. The TS originates from discontinuous CF with isolated Ag nanocrystals. The results of current–voltage fitting and Kelvin probe force microscopy further indicate that the TS mechanism is related to the modulation of the tunneling barrier between Ag nanocrystals in CF. This work provides clearly experimental evidence to deepen understanding of the mechanism for RS in oxide‐electrolyte‐based resistive switching memory, contributing to better control of the two RS behaviors to establish high‐performance emerging devices.  相似文献   

17.
The fabrication of aligned single‐walled, carbon nanotube (SWCNT) intratube junction devices by partially coating pristine SWCNTs with a β‐nicotinamide adenine dinucleotide (NADH) solution and subsequent annealing at 150 °C is reported. Gate‐bias‐dependent rectification behavior is observed with a rectification ratio of >103 at ±1 V. A comparative study with p–n‐junction devices of randomly networked SWCNTs confirms the advantage of using aligned SWCNTs with substantially better rectifying characteristics due to the selective removal of metallic tubes by electrical breakdown. The gate dependence of the intratube p–n‐junction in the forward and backward directions is attributed to the difference in the shift of the Fermi levels (forward bias) and the enhanced direct tunneling (reverse bias), as suggested by band‐diagram modeling. This work suggests a potential application of aligned SWCNT intratube p–n‐junction devices in the future of nanoelectronic circuits.  相似文献   

18.
The realization of large‐area and low‐cost flexible macroelectronics relies on both the advancements in materials science and the innovations in manufacturing techniques. In this study, extremely bendable and foldable carbon nanotube thin film transistors and integrated logic gates are fabricated on a piece of ultrathin polyimide substrate through an ink‐jet‐like printing process. The adoption of a hybrid gate dielectric layer consisting of barium titanate nanoparticles and poly(methyl methacrylate) has led to not only excellent gating effect but also superior mechanical compliance. The device characteristics show negligible amount of change after up to 1000 cycles of bending tests with curvature radii down to 1 mm, as well as very aggressive folding tests. Additionally, the electrical characteristics of each integrated logic gate can be tuned and optimized individually by using different numbers of carbon nanotube printing passes for different devices, manifesting the unique adaptability of ink‐jet printing as a digital, additive, and maskless method. This report on fully printed and foldable integrated logic gates represents an inspiring advancement toward the practical applications of carbon nanotubes for high‐performance and low‐cost ubiquitous flexible electronics.  相似文献   

19.
Studies on a resistive switching memory based on a silver‐ion‐conductive solid polymer electrolyte (SPE) are reported. Simple Ag/SPE/Pt structures containing polyethylene oxide–silver perchlorate complexes exhibit bipolar resistive switching under bias voltage sweeping. The switching behavior depends strongly on the silver perchlorate concentration. From the results of thermal, transport, and electrochemical measurements, it is concluded that the observed switching originates from formation and dissolution of a silver metal filament inside the SPE film caused by electrochemical reactions. This is the first report of an electrochemical “atomic switch” realized using an organic material. The devices also show ON/OFF resistance ratios greater than 105, programming speeds higher than 1 μs, and retention times longer than 1 week. These results suggest that SPE‐based electrochemical devices might be suitable for flexible switch and memory applications.  相似文献   

20.
Fabrication of functional devices on arbitrary non‐conventional substrates has significant advantages for broadening devices applications and the development of soft electronic systems such as flexible, stretchable, wearable, and epidermal electronic modules. Information storage device is one of crucial electronic elements in modern digital circuitries. Herein, a re‐writable, transferable, and flexible sticker‐type organic memory on universal substrates is demonstrated through a facile and cost‐effective one‐step strategy. The organic memory sticker based on the graphene electrode grown by chemical vapor deposition consists of a blending composite of polymer (poly (methyl methacrylate) (PMMA):poly (3‐hexylthiophene) (P3HT) in chlorobenzene (CB) fabricated by mature solution processes and facilities. By combining with the mechanical elastic of organic material and graphene electrode, the sticker‐type organic memory can be easily tagged on non‐planar or flexible substrates after etching away the supporting metal. Particularly, the new attachable sticker‐type memory processes a unique feature of re‐programmable capability. It is believed that the universal substrate selectivity of the sticker‐type organic memory with re‐writable characteristic revealed here may greatly enlarge information storage devices in immense areas and advance the future functional soft circuitries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号