首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of dicarbazolyl derivatives bridged by various aromatic spacers and decorated with peripheral diarylamines were synthesized using Ullmann and Pd‐catalyzed C–N coupling procedures. These derivatives emit blue light in solution. In general, they possess high glass‐transition temperatures (Tg > 125 °C) which vary with the bridging segment and methyl substitution on the peripheral amine. Double‐layer organic light‐emitting devices were successfully fabricated using these molecules as hole‐transporting and emitting materials. Devices of the configuration ITO/HTL/TPBI/Mg:Ag (ITO: indium tin oxide; HTL: hole‐transporting layer; TPBI: 1,3,5‐tris(N‐phenylbenzimidazol‐2‐yl)benzene) display blue emission from the HTL layer. The EL spectra of these devices appear slightly distorted due to the exciplex formation at the interfaces. However, for the devices of the configuration ITO/HTL/Alq3/Mg:Ag (Alq3 = tris(8‐hydroxyquinoline)aluminum) a bright green light from the Alq3 layer was observed. This clearly demonstrates the facile hole‐transporting property of the materials described here.  相似文献   

2.
Conventional organic light emitting devices have a bottom buffer interlayer placed underneath the hole transporting layer (HTL) to improve hole injection from the indium tin oxide (ITO) electrode. In this work, a substantial enhancement in hole injection efficiency is demonstrated when an electron accepting interlayer is evaporated on top of the HTL in an inverted device along with a top hole injection anode compared with the conventional device with a bottom hole injection anode. Current–voltage and space‐charge‐limited dark injection (DI‐SCLC) measurements were used to characterize the conventional and inverted N,N′‐diphenyl‐N,N′‐bis(1‐naphthyl)(1,1biphenyl)‐4,4diamine (NPB) hole‐only devices with either molybdenum trioxide (MoO3) or 1,4,5,8,9,11‐hexaazatriphenylene hexacarbonitrile (HAT‐CN) as the interlayer. Both normal and inverted devices with HAT‐CN showed significantly higher injection efficiencies compared to similar devices with MoO3, with the inverted device with HAT‐CN as the interlayer showing a hole injection efficiency close to 100%. The results from doping NPB with MoO3 or HAT‐CN confirmed that the injection efficiency enhancements in the inverted devices were due to the enhanced charge transfer at the electron acceptor/NPB interface.  相似文献   

3.
In this paper, the bis‐condensed 4‐(dicyanomethylene)‐2‐methyl‐6‐[p‐(dimethylamino)styryl]‐4H‐pyran ( DCM) derivatives are introduced as a new class of red dye for organic light‐emitting devices (OLEDs). They showed more red‐shifted emission than the mono‐substituted DCM derivatives and the emission maxima increased as the electron‐donating ability of the aromatic donor group increased. On the basis of these results, red light‐emitting devices were fabricated with bis‐condensed DCM derivatives as red dopants. For a device of configuration ITO/TPD/Alq3 + DADB (5.2 wt.‐%)/Alq3/Al (where ITO is indium tin oxide, TPD is N,N′‐diphenyl‐N,N′‐bis(3‐methylphenyl)‐1,1′‐biphenyl‐4,4′‐diamine, Alq3 is tris(8‐hydroxyquinoline) aluminum, and DADB is [2,6‐bis[2‐[5‐(dibutylamino)phenyl]vinyl]‐4H‐pyran‐4‐ylidene]propanedinitrile), pure red emission was observed with Commission Internationale de l’Eclairage (CIE 1931) coordinates of (0.658, 0.337) at 25 mA/cm2.  相似文献   

4.
A new series of full hydrocarbons, namely 4,4′‐(9,9′‐(1,3‐phenylene)bis(9H‐fluorene‐9,9‐diyl))bis(N,N‐diphenylaniline) (DTPAFB), N,N′‐(4,4′‐(9,9′‐(1,3‐phenylene)bis(9H‐fluorene‐9,9‐diyl))bis(4,1‐phenylene))bis(N‐phenylnaphthalen‐1‐amine) (DNPAFB), 1,3‐bis(9‐(4‐(9H‐carbazol‐9‐yl)phenyl)‐9H‐fluoren‐9‐yl)benzene, and 1,3‐bis(9‐(4‐(3,6‐di‐tert‐butyl‐9H‐carbazol‐9‐yl)phenyl)‐9H‐fluoren‐9‐yl)benzene, featuring a highly twisted tetrahedral conformation, are designed and synthesized. Organic light‐emitting diodes (OLEDs) comprising DNPAFB and DTPAFB as hole transporting layers and tris(quinolin‐8‐yloxy)aluminum as an emitter are made either by vacuum deposition or by solution processing, and show much higher maximum efficiencies than the commonly used N,N′‐di(naphthalen‐1‐yl)‐N,N′‐diphenylbiphenyl‐4,4′‐diamine device (3.6 cd A?1) of 7.0 cd A?1 and 6.9 cd A?1, respectively. In addition, the solution processed blue phosphorescent OLEDs employing the synthesized materials as hosts and iridium (III) bis[(4,6‐di‐fluorophenyl)‐pyridinato‐N, C2] picolinate (FIrpic) phosphor as an emitter present exciting results. For example, the DTPAFB device exhibits a brightness of 47 902 cd m?2, a maximum luminescent efficiency of 24.3 cd A?1, and a power efficiency of 13.0 lm W?1. These results show that the devices are among the best solution processable blue phosphorescent OLEDs based on small molecules. Moreover, a new approach to constructing solution processable small molecules is proposed based on rigid and bulky fluorene and carbazole moieties combined in a highly twisted configuration, resulting in excellent solubility as well as chemical miscibility, without the need to introduce any solubilizing group such as an alkyl or alkoxy chain.  相似文献   

5.
A new hyperbranched polymer ( HB‐car ), constructed fully by carbazole moieties, is successfully synthesized through a one‐pot Suzuki coupling reaction. The resultant polymer is well‐characterized, and its hole‐transporting ability is studied carefully. The device, in which HB‐car is utilized as a hole‐transporting layer and tris‐(8‐hydroxyquinoline) aluminum as an electron‐emitting layer as well as electron‐transporting layer, gives a much higher efficiency (3.05 cd A–1), than that of a poly(N‐vinylcarbazole) based device (2.19 cd A–1) under similar experimental conditions. The remarkable performance is attributed to its low energy barrier and enhanced hole‐drifting ability in the HB‐car based device. In addition, for the first time, a field‐effect transistor (FET) based on the hyperbranched polymer is fabricated, and the organic FET device shows that HB‐car is a typical p‐type FET material with a saturation mobility of 1 × 10–5 cm2 V–1 s–1, a threshold voltage of –47.1 V, and an on‐to‐off current ratio of 103.  相似文献   

6.
A novel red phosphorescent iridium complex containing a carbazole‐functionalized β‐diketonate, Ir(DBQ)2(CBDK) (bis(dibenzo[f,h]quinoxalinato‐N,C2) iridium (1‐(carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐diketonate)) is designed, synthesized, and characterized. The electrophosphorescence properties of a nondoped device using the title complex as an emitter with a device configuration of indium tin oxide (ITO)/N,N′‐diphenyl‐N,N′‐bis(1‐naphthyl)‐1,1′‐diphenyl‐4,4′‐diamine (NPB; 20 nm)/iridium complex (20 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 5 nm)/tris(8‐hydroxyquinoline) (AlQ; 30 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) are examined. The results show that the nondoped device achieves a maximum lumen efficiency as high as 3.49 lm W–1. To understand this excellent result observed, two reference complexes Ir(DBQ)2(acac), where acac is the acetyl acetonate anion, and Ir(DBQ)2(FBDK), [bis(dibenzo[f,h]quinoxalinato‐N,C2) iridium (1‐(9‐methyl‐fluoren‐9‐yl)‐6,6‐dimethylheptane‐3,5‐diketonate)], have also been synthesized, and as emitters they were examined under the same device configuration. The maximum lumen efficiency of the former compound is found to be 0.26 lm W–1 while that for the latter is 0.37 lm W–1, suggesting that the excellent performance of Ir(DBQ)2(CBDK) can be attributed mainly to an improved hole‐transporting property that benefits the exciton transport. In addition, a bulky diketonate group separates the emitter centers from each other, which is also important for organic light‐emitting diodes.  相似文献   

7.
Solution‐processed organic light‐emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) material as emitter have attracted much attention because of their low cost and high performance. However, exciton quench at the interface between the hole injection layer, poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and emitting layer (EML) in devices can lead to low device performance. Here, a novel high triplet energy (2.89 eV) and crosslinkable hole‐transporting material grafted with oxetane groups, N,N‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy)hexyloxy)phenyl)‐3,5‐di(9H‐carbazol‐9‐yl)benzenamine (Oxe‐DCDPA)), as crosslinked hole transport layer (HTL) into the interface of PEDOT:PSS layer and EML is proposed for prevention of exciton quenching, and among the reported devices with single HTL in solution‐processed TADF‐OLED, the highest external quantum efficiency (EQE)/luminous efficiency (ηL) of 26.1%/94.8 cd A?1 and 24.0%/74.0 cd A?1 are achieved for green emission (DACT‐II as emitter) and bluish‐green emission (DMAC‐TRZ as emitter), respectively. Further improvement, using double HTLs, composed of N,N′‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy))‐hexylphenyl)‐N,N′‐diphenyl‐4,4′‐diamine with high hole mobility and Oxe‐DCDPA with high triplet energy, leads to the highest EQE/ηL of 30.8%/111.9 cd A?1 and 27.2%/83.8 cd A?1 for green emission and bluish‐green emission, respectively. These two devices show the high maximum brightness of 81 100 and 70 000 cd m?2, respectively.  相似文献   

8.
An organic compound with two triphenylamine moieties linked with binaphthyl at the 3,3′‐positions (2,2′‐dimethoxyl‐3,3′‐ di(phenyl‐4‐yl‐diphenyl‐amine)‐[1,1′]‐binaphthyl, TPA–BN–TPA) can be synthesized by Suzuki coupling. Amorphous and homogeneous films are obtained by either vacuum deposition or spin‐coating from solution in good solvents, while single crystals are grown in an appropriate polar solvent. X‐ray crystallography showed that a TPA–BN–TPA crystal is a multichannel structure containing solvent molecules in the channels. The intramolecular charge‐transfer state resulting from amino conjugation effects is observed by solvatochromic experiments. The high glass‐transition temperature (130 °C) and decomposition temperature (439 °C) of this material, in combination with its reversible oxidation property, make it a promising candidate as a hole‐transport material for light‐emitting diodes. With TPA–BN–TPA as the hole‐transporting layer in an indium tin oxide/TPA–BN–TPA/aluminum tris(8‐hydroxyquinoline)/Mg:Ag device, a brightness of about 10 100 cd m–2 at 15.6 V with a maximum efficiency of 3.85 cd A–1 is achieved, which is superior to a device with N,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐[1,1′‐biphenyl]‐4,4′‐diamine as the hole‐transporting layer under the same conditions. Other devices with TPA–BN–TPA as the blue‐light‐emitting layer or host for a blue dye emitter are also studied.  相似文献   

9.
We report the design and synthesis of three alcohol‐soluble neutral conjugated polymers, poly[9,9‐bis(2‐(2‐(2‐diethanolaminoethoxy) ethoxy)ethyl)fluorene] (PF‐OH), poly[9,9‐bis(2‐(2‐(2‐diethanol‐aminoethoxy)ethoxy)ethyl)fluorene‐alt‐4,4′‐phenylether] (PFPE‐OH) and poly[9,9‐bis(2‐(2‐(2‐diethanolaminoethoxy) ethoxy)ethyl)fluorene‐alt‐benzothiadizole] (PFBT‐OH) with different conjugation length and electron affinity as highly efficient electron injecting and transporting materials for polymer light‐emitting diodes (PLEDs). The unique solubility of these polymers in polar solvents renders them as good candidates for multilayer solution processed PLEDs. Both the fluorescent and phosphorescent PLEDs based on these polymers as electron injecting/transporting layer (ETL) were fabricated. It is interesting to find that electron‐deficient polymer (PFBT‐OH) shows very poor electron‐injecting ability compared to polymers with electron‐rich main chain (PF‐OH and PFPE‐OH). This phenomenon is quite different from that obtained from conventional electron‐injecting materials. Moreover, when these polymers were used in the phosphorescent PLEDs, the performance of the devices is highly dependent on the processing conditions of these polymers. The devices with ETL processed from water/methanol mixed solvent showed much better device performance than the devices processed with methanol as solvent. It was found that the erosion of the phosphorescent emission layer could be greatly suppressed by using water/methanol mixed solvent for processing the polymer ETL. The electronic properties of the ETL could also be influenced by the processing conditions. This offers a new avenue to improve the performance of phosphorescent PLEDs through manipulating the processing conditions of these conjugated polymer ETLs.  相似文献   

10.
A series of fluorene‐based oligomers with novel spiro‐annulated triarylamine structures, namely DFSTPA, TFSTPA, and TFSDTC, are synthesized by a Suzuki cross‐coupling reaction. The spiro‐configuration molecular structures lead to very high glass transition temperatures (197–253 °C) and weak intermolecular interactions, and consequently the structures retain good morphological stability and high fluorescence quantum efficiencies(0.69–0.98). This molecular design simultaneously solves the spectral stability problems and hole‐injection and transport issues for fluorene‐based blue‐light‐emitting materials. Simple double‐layer electroluminescence (EL) devices with a configuration of ITO/TFSTPA (device A) or TFSDTC (device B)/ TPBI/LiF/Al, where TFSTPA and TFSDTC serve as hole‐transporting blue‐light‐emitting materials, show a deep‐blue emission with a peak around 432 nm, and CIE coordinates of (0.17, 0.12) for TFSTPA and (0.16, 0.07) for TFSDTC, respectively, which are very close to the National Television System Committee (NTSC) standard for blue (0.15, 0.07). The maximum current efficiency/external quantum efficiencies are 1.63 cd A?1/1.6% for device A and 1.91 cd A?1/2.7% for device B, respectively. In addition, a device with the structure ITO/DFSTPA/Alq3/LiF/Al, where DFSTPA acts as both the hole‐injection and ‐transporting material, is shown to achieve a good performance, with a maximum luminance of 14 047 cd m?2, and a maximum current efficiency of 5.56 cd A?1. These values are significantly higher than those of devices based on commonly usedN,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐[1,1′‐biphenyl]‐4,4′‐diamine (NPB) as the hole‐transporting layer (11 738 cd m?2 and 3.97 cd A?1) under identical device conditions.  相似文献   

11.
We demonstrate enhanced hole injection and lowered driving voltage in vacuum‐deposited organic light‐emitting diodes (OLEDs) with a hole‐transport layer using the starburst amine 4,4′,4″‐tris(N,N‐diphenyl‐amino)triphenylamine (TDATA) p‐doped with a very strong acceptor, tetrafluoro‐tetracyano‐quinodimethane (F4‐TCNQ) by controlled coevaporation. The doping leads to high conductivity of doped TDATA layers and a high density of equilibrium charge carriers, which facilitates hole injection and transport. Moreover, multilayer OLEDs consisting of double hole‐transport layers of thick p‐doped TDATA and a thin triphenyl‐diamine (TPD) interlayer exhibit very low operating voltages.  相似文献   

12.
A new triphenylamine/oxadiazole hybrid, namely m‐TPA‐o‐OXD, formed by connecting the meta‐position of a phenyl ring in triphenylamine with the ortho‐position of 2,5‐biphenyl‐1,3,4‐oxadiazole, is designed and synthesized. The new bipolar compound is applicable in the phosphorescent organic light‐emitting diodes (PHOLEDs) as both host and exciton‐blocking material. By using the new material and the optimization of the device structures, very high efficiency green and yellow electrophosphorescence are achieved. For example, by introducing 1,3,5‐tris(N‐phenylbenzimidazol‐2‐yl)benzene (TPBI) to replace 2, 9‐dimethyl‐4,7‐diphenyl‐1, 10‐phenanthroline (BCP)/tris(8‐hydroxyquinoline)aluminium (Alq3) as hole blocking/electron transporting layer, followed by tuning the thicknesses of hole‐transport 1, 4‐bis[(1‐naphthylphenyl)amino]biphenyl (NPB) layer to manipulate the charge balance, a maximum external quantum efficiency (ηEQE,max) of 23.0% and a maximum power efficiency (ηp,max) of 94.3 lm W−1 are attained for (ppy)2Ir(acac) based green electrophosphorescence. Subsequently, by inserting a thin layer of m‐TPA‐o‐OXD as self triplet exciton block layer between hole‐transport and emissive layer to confine triplet excitons, a ηEQE,max of 23.7% and ηp,max of 105 lm W−1 are achieved. This is the highest efficiency ever reported for (ppy)2Ir(acac) based green PHOLEDs. Furthermore, the new host m‐TPA‐o‐OXD is also applicable for other phosphorescent emitters, such as green‐emissive Ir(ppy)3 and yellow‐emissive (fbi)2Ir(acac). A yellow electrophosphorescent device with ηEQE,max of 20.6%, ηc,max of 62.1 cd A−1, and ηp,max of 61.7 lm W−1, is fabricated. To the author’s knowledge, this is also the highest efficiency ever reported for yellow PHOLEDs.  相似文献   

13.
The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub‐OLEDs in the stacked device. Luminance–current density–voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n‐type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole‐transport material, 4,4',4”‐tris(N‐carbazolyl)‐triphenyl amine. The role of the adjacent n‐type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub‐OLED.  相似文献   

14.
Stability is the main challenge in the field of organic–inorganic perovskite solar cells (PSCs). Finding low‐cost and stable hole transporting layer (HTL) is an effective strategy to address this issue. Here, a new donor polymer, poly(5,5‐didecyl‐5H‐1,8‐dithia‐as‐indacenone‐alt‐thieno[3,2‐b]thiophene) (PDTITT), is synthesized and employed as an HTL in PSCs, which has a suitable band alignment with respect to the double‐A cation perovskite film. Using PDTITT, the hole extraction in PSCs is greatly improved as compared to commonly used HTLs such as 2,2′,7,7′‐tetrakis[N,N‐di(4‐methoxyphenyl)amino]‐9,9′‐spirobifluorene (spiro‐OMeTAD), addressing the hysteresis issue. After careful optimization, an efficient PSC is achieved based on mesoscopic TiO2 electron transporting layer with a maximum power conversion efficiency (PCE) of 18.42% based on PDTITT HTL, which is comparable with spiro‐OMeTAD‐based PSC (19.21%). Since spiro‐based PSCs suffer from stability issue, the operational stability in the PSC with PDTITT HTL is studied. It is found that the device with PDTITT retains 88% of its initial PCE value after 200 h under illumination, which is better than the spiro‐based PSC (54%).  相似文献   

15.
In this paper polymeric light‐emitting diodes (LEDs) based on alkoxy‐substituted poly(p‐phenylene ethynylene) EHO‐OPPE as emitter material in combination with poly(triphenyldiamine) as hole transport material are demonstrated. Different device configurations such as single‐layer devices, two‐layer devices, and blend devices were investigated. Device improvement and optimization were obtained through careful design of the device structure and composition. Furthermore, the influence of an additional electron transporting and hole blocking layer (ETHBL), spiroquinoxaline (spiro‐qux), on top of the optimized blend device was investigated using a combinatorial method, which allows the preparation of a number of devices characterized by different layer thicknesses in one deposition step. The maximum brightness of the investigated devices increased from 4 cd/m2 for a device of pure EHO‐OPPE to 260 cd/m2 in a device with 25 % EHO‐OPPE + 75 % poly(N,N′‐diphenylbenzidine diphenylether) (poly‐TPD) as the emitting/hole‐transporting layer and an additional electron‐transport/hole‐blocking spiro‐qux layer of 48 nm thickness.  相似文献   

16.
A novel heteroleptic RuII complex (BTC‐2) employing 5,5′‐(2,2′‐bipyridine‐4,4′‐diyl)‐bis(thiophene‐2‐carboxylic acid) (BTC) as the anchoring group and 4,4′‐ dinonyl‐2,2′‐bipiridyl and two thiocyanates as ligands is prepared. The photovoltaic performance and device stability achieved with this sensitizer are compared to those of the Z‐907 dye, which lacks the thiophene moieties. For thin mesoporous TiO2 films, the devices with BTC‐2 achieve higher power conversion efficiencies than those of Z‐907 but with a double‐layer thicker film the device performance is similar. Using a volatile electrolyte and a double layer 7 + 5 μm mesoporous TiO2 film, BTC‐2 achieves a solar‐to‐electricity conversion efficiency of 9.1% under standard global AM 1.5 sunlight. Using this sensitizer in combination with a low volatile electrolyte, a photovoltaic efficiency of 8.3% is obtained under standard global AM 1.5 sunlight. These devices show excellent stability when subjected to light soaking at 60 °C for 1000 h. Electrochemical impedance spectroscopy and transient photovoltage decay measurements are performed to help understand the changes in the photovoltaic parameters during the aging process. In solid state dye‐sensitized solar cells (DSSCs) using an organic hole‐transporting material (spiro‐MeOTAD, 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene), the BTC‐2 sensitizer exhibits an overall power conversion efficiency of 3.6% under AM 1.5 solar (100 mW cm?2) irradiation.  相似文献   

17.
New spiro‐bisilole molecules functionalized with nitrogen‐containing heterocyclic groups including 7‐azaindolyl, indolyl, and 2,2′‐dipyridylamino have been synthesized. These molecules are found to display good chemical and thermal stability. They are luminescent in solution and in the solid state with an emission color ranging from blue–green to yellow, depending on the functional group. In the solid state, they display high photoluminescence quantum efficiency (32–40 %). The electroluminescence properties for one of the new molecules, 2,3,3′,4,4′,5‐hexaphenyl‐2′,5′‐bis(p‐2,2′‐dipyridylaminophenyl)spiro‐bisilole, have been investigated by fabricating single‐layer and double‐layer electroluminescent devices. The double‐layer device, in which N,N′‐bis(1‐naphthyl)‐N,N′‐diphenylbenzidine acts as the hole‐transport layer and the functionalized spiro‐bisilole functions as the emitter (emission wavelength = 566 nm) and the electron‐transport layer, displays a brightness of 8440 cd m–2 at 9 V with a current efficiency of 1.71 cd A–1. No evidence of exiplex emission is observed.  相似文献   

18.
A series of 2,7‐disubstituted carbazole (2,7‐carb) derivatives incorporating arylamines at the 2 and 7 positions are synthesized via palladium‐catalyzed C–N or C–C bond formation. These compounds possess glass transition temperatures ranging from 87 to 217 °C and exhibit good thermal stabilities, with thermal decomposition temperatures ranging from 388 to 480 °C. They are fluorescent and emit in the purple‐blue to orange region. Two types of organic light emitting diodes (OLEDs) were constructed from these compounds: (I) indium tin oxide (ITO)/2,7‐carb (40 nm)/1,3,5‐tris(N‐phenylbenzimidazol‐2‐yl)benzene (TPBI, 40 nm)/Mg:Ag; and (II) ITO/2,7‐carb (40 nm)/tris(8‐hydroxyquinoline) aluminum (Alq3, 40 nm)/Mg:Ag. In type I devices, the 2,7‐disubstituted carbazoles function as both hole‐transporting and emitting material. In type II devices, light is emitted from either the 2,7‐disubstituted carbazole layer or Alq3. The devices appear to have a better performance compared to devices fabricated with their 3,6‐disubstituted carbazole congeners. Some of the new compounds exhibit ambipolar conductive behavior, with hole and electron mobilities up to 10–4 cm2 V–1 s–1.  相似文献   

19.
Intermolecular interactions play a crucial role in the performance of organic light‐emitting diodes (OLEDs). Here we report the photophysical and electroluminescence properties of a fac‐tris(2‐phenylpyridyl)iridium(III ) cored dendrimer in which highly branched biphenyl dendrons are used to control the intermolecular interactions. The presence of fluorene surface groups improves the solubility and enhances the efficiency of photoluminescence, especially in the solid state. The emission peak of the dendrimer is around 530 nm with a PL quantum yield of 76 % in solution and 25 % in a film. The photophysical properties of this dendrimer are compared with a similar dendrimer with the same structure but without the fluorene surface groups. Dendrimer LEDs (DLEDs) are prepared using each dendrimer as a phosphorescent emitter blended in a 4,4′‐bis(N‐carbazolyl)biphenyl host. Device performance is improved significantly by the incorporation of an electron‐transporting layer of 1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene. A peak external quantum efficiency of 10 % (38 Cd A–1) for the dendrimer without surface groups and 13 % (49.8 Cd A–1) for the dendrimer with fluorene surface groups is achieved in the bilayer LEDs.  相似文献   

20.
Two host materials of {4‐[diphenyl(4‐pyridin‐3‐ylphenyl)silyl]phenyl}diphenylamine (p‐PySiTPA) and {4‐[[4‐(diphenylphosphoryl)phenyl](diphenyl)silyl]phenyl}diphenylamine (p‐POSiTPA), and an electron‐transporting material of [(diphenylsilanediyl)bis(4,1‐phenylene)]bis(diphenylphosphine) dioxide (SiDPO) are developed by incorporating appropriate charge transporting units into the tetraarylsilane skeleton. The host materials feature both high triplet energies (ca. 2.93 eV) and ambipolar charge transporting nature; the electron‐transporting material comprising diphenylphosphine oxide units and tetraphenylsilane skeleton exhibits a high triplet energy (3.21 eV) and a deep highest occupied molecular orbital (HOMO) level (‐6.47 eV). Using these tetraarylsilane‐based functional materials results in a high‐efficiency blue phosphorescent device with a three‐organic‐layer structure of 1,1‐bis[4‐[N,N‐di(p‐tolyl)‐amino]phenyl]cyclohexane (TAPC)/p‐POSiTPA: iridium(III) bis(4′,6′‐difluorophenylpyridinato)tetrakis(1‐pyrazolyl)borate (FIr6)/SiDPO that exhibits a forward‐viewing maximum external quantum efficiency (EQE) up to 22.2%. This is the first report of three‐organic‐layer FIr6‐based blue PhOLEDs with the forward‐viewing EQE over 20%, and the device performance is among the highest for FIr6‐based blue PhOLEDs even compared with the four or more than four organic‐layer devices. Furthermore, with the introduction of bis(2‐(9,9‐diethyl‐9H‐fluoren‐2‐yl)‐1‐phenyl‐1H‐benzoimidazol‐N,C3)iridium acetylacetonate [(fbi)2Ir(acac)] as an orange emitter, an all‐phosphor warm‐white PhOLED achieves a peak power efficiency of 47.2 lm W?1, which is close to the highest values ever reported for two‐color white PhOLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号