首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In this study, integrated plaster‐like micro‐supercapacitors based on medical adhesive tapes are fabricated by a simple pencil drawing process combined with a mild solution deposition of MnO2. These solid micro‐supercapacitors not only exhibit excellent stretchability, flexibility, and biocompatibility, but also possess outstanding electrochemical performances, such as exceptional rate capability and cycling stability. Hence they may act as skin‐mountable and thin‐film energy storage devices of high efficiency to power miniaturized and wearable electronic devices.  相似文献   

5.
6.
X‐ray computed tomography is an important tool for non‐destructively evaluating the 3‐D microstructure of modern materials. To resolve material structures in the micrometer range and below, high brilliance synchrotron radiation has to be used. The Federal Institute for Materials Research and Testing (BAM) has built up an imaging setup for micro‐tomography and ‐radiography (BAMline) at the Berliner storage ring for synchrotron radiation (BESSY). In computed tomography, the contrast at interfaces within heterogeneous materials can be strongly amplified by effects related to X‐ray refraction. Such effects are especially useful for materials of low absorption or mixed phases showing similar X‐ray absorption properties that produce low contrast. The technique is based on ultra‐small‐angle scattering by microstructural elements causing phase‐related effects, such as refraction and total reflection. The extraordinary contrast of inner surfaces is far beyond absorption effects. Crack orientation and fibre/matrix debonding in plastics, polymers, ceramics and metal‐matrix‐composites after cyclic loading and hydro‐thermal aging can be visualized. In most cases, the investigated inner surface and interface structures correlate to mechanical properties. The technique is an alternative to other attempts on raising the spatial resolution of CT machines.  相似文献   

7.
8.
9.
10.
F. Cosmi  C. Ravalico 《Strain》2015,51(3):171-179
The micro‐tomographic technique represents an important tool for the analysis of the internal structure in short‐fibre‐reinforced polymers samples. For the investigation of damage mechanisms, detection of the micro‐voids within the matrix can be facilitated by applying a tensile load in‐situ during the scan. The investigations here described started from two micro‐CT acquisitions, at different strain levels, of the same PA6.6GF10 sample. An original procedure for micro‐voids identification is proposed, based on the statistical elaboration of the matrix grey‐tone range. In order to validate the suggested procedure beyond visual inspection, an independent method based on an optimisation approach, which puts to use the two available micro‐tomographic sets, was developed and applied. The effect of the tensile load, which can induce a progression of the damage within the specimen, was investigated, and the relations among strain, fibre distribution and micro‐voids volumetric fraction were studied. Our findings point out that the mechanisms of damage progression, even under static loading as in this case, appear to be more complex than those related to the fibre‐density‐induced stress concentrations alone and require further investigation.  相似文献   

11.
12.
Unlike a Hertzian ring crack induced by a spherical indenter in absence of a singular stress field, a ring crack generated by a rigid flat cylindrical indenter can be explicitly linked to a K‐dominant singular stress field at the perimeter of the flat indenter. This means microcrack initiation induced by a flat indenter and relevant properties such as the critical indentation load and fracture toughness can be formulated explicitly using the fracture mechanics approach. It is shown in this paper that the indentation stress intensity factor, , for such a stress field is similar to that of a mode I crack. Based on the energy‐releasing rate and the Griffith's theorem, a flat indentation cracking model has been proposed; the critical load and critical cracking angle for crack initiation are derived. A new concept of fracture toughness for negative mode I singular stress field,, has been defined and a relationship between and the traditional KIC has been derived. The experimental investigation validates the existence of such , from which the KIC value of the glass had been determined to be 0.772 ± 0.003 MPa m1/2, agreeing well with the literature data. This analysis for indentation fracture or crack initiation due to surface contact of a flat indenter is particularly useful in determining KIC of brittle materials with dimensions in micro/nanoscales, e.g. thin films and other microstructures as flat micro/nano‐indenters are available and can be used on various nano‐indentation machines.  相似文献   

13.
Inspired by the self‐migration of microorganisms in nature, artificial micro‐ and nanomotors can mimic this fantastic behavior by converting chemical fuel or external energy into mechanical motion. These self‐propelled micro‐ and nanomotors, designed either by top‐down or bottom‐up approaches, are able to achieve different applications, such as environmental remediation, sensing, cargo/sperm transportation, drug delivery, and even precision micro‐/nanosurgery. For these various applications, especially biomedical applications, regulating on‐demand the motion of micro‐ and nanomotors is quite essential. However, it remains a continuing challenge to increase the controllability over motors themselves. Here, we will discuss the recent advancements regarding the motion manipulation of micro‐ and nanomotors by different approaches.  相似文献   

14.
15.
16.
A supramolecular assembly scheme is developed to enable the facile in‐situ immobilization of enzymes in a microfluidic channel system. A combination of orthogonal supramolecular interactions of host (β‐cyclodextrin)–guest (adamantane) and biotin–Streptavidin (SAv) interactions are employed to generate reusable homogeneous enzyme layers in microchannels. The structural integrity and catalytic activity of the immobilized enzyme calf‐intestine alkaline phosphatase (AlkPh) is demonstrated. From the kinetic analysis of a dephosphorylation reaction, the specificity constant kcat/KM for immobilized alkaline phosphatase in the channels is on the order of 105 M?1s?1 and comparable to known literature values in other environments. These observations are ascribed to the good access of the substrate to favorably oriented enzymes across the microchannel. Therefore, this study demonstrates the great potential for adopting a supramolecular assembly scheme to immobilize enzymes in microfluidic devices.  相似文献   

17.
Flexible planar micro‐supercapacitors (MSCs) with unique loose and porous nanofiber‐like electrode structures are fabricated by combining electrochemical deposition with inkjet printing. Benefiting from the resulting porous nanofiber‐like structures, the areal capacitance of the inkjet‐printed flexible planar MSCs is obviously enhanced to 46.6 mF cm?2, which is among the highest values ever reported for MSCs. The complicated fabrication process is successfully averted as compared with previously reported best‐performing planar MSCs. Besides excellent electrochemical performance, the resultant MSCs also show superior mechanical flexibility. The as‐fabricated MSCs can be highly bent to 180° 1000 times with the capacitance retention still up to 86.8%. Intriguingly, because of the remarkable patterning capability of inkjet printing, various modular MSCs in serial and in parallel can be directly and facilely inkjet‐printed without using external metal interconnects and tedious procedures. As a consequence, the electrochemical performance can be largely enhanced to better meet the demands of practical applications. Additionally, flexible serial MSCs with exquisite and aesthetic patterns are also inkjet‐printed, showing great potential in fashionable wearable electronics. The results suggest a feasible strategy for the facile and cost‐effective fabrication of high‐performance flexible MSCs via inkjet printing.  相似文献   

18.
Planar micro‐supercapacitors are attractive for system on chip technologies and surface mount devices due to their large areal capacitance and energy/power density compared to the traditional oxide‐based capacitors. In the present work, a novel material, niobium nanowires, in form of vertically aligned electrodes for application in high performance planar micro‐supercapacitors is introduced. Specific capacitance of up to 1 kF m?2 (100 mF cm?2) with peak energy and power density of 2 kJ m?2 (6.2 MJ m?3 or 1.7 mWh cm?3) and 150 kW m?2 (480 MW m?3 or 480 W cm?3), respectively, is achieved. This remarkable power density, originating from the extremely low equivalent series resistance value of 0.27 Ω (2.49 µΩ m2 or 24.9 mΩ cm2) and large specific capacitance, is among the highest for planar micro‐supercapacitors electrodes made of nanomaterials.  相似文献   

19.
20.
Cost‐effective synthesis of carbon nanospheres with a desirable mesoporous network for diversified energy storage applications remains a challenge. Herein, a direct templating strategy is developed to fabricate monodispersed N‐doped mesoporous carbon nanospheres (NMCSs) with an average particle size of 100 nm, a pore diameter of 4 nm, and a specific area of 1093 m2 g?1. Hexadecyl trimethyl ammonium bromide and tetraethyl orthosilicate not only play key roles in the evolution of mesopores but also guide the assembly of phenolic resins to generate carbon nanospheres. Benefiting from the high surface area and optimum mesopore structure, NMCSs deliver a large specific capacitance up to 433 F g?1 in 1 m H2SO4. The NMCS electrodes–based symmetric sandwich supercapacitor has an output voltage of 1.4 V in polyvinyl alcohol/H2SO4 gel electrolyte and delivers an energy density of 10.9 Wh kg?1 at a power density of 14014.5 W kg?1. Notably, NMCSs can be directly applied through the mask‐assisted casting technique by a doctor blade to fabricate micro‐supercapacitors. The micro‐supercapacitors exhibit excellent mechanical flexibility, long‐term stability, and reliable power output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号