首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new molecular design strategy for tuning the energy levels of cis‐configured squaraine sensitizers for dye‐sensitized solar cells is described. The Hammett substituent constant and the π‐conjugation length are used as quantitative indicators to modify the central squarate moiety of the sensitizer dyes; specifically, novel near‐infrared squaraine dyes HSQ3 and HSQ4 are synthesized by incorporation of an electron‐withdrawing and π‐extending ethyl cyanoacetate unit on the central squarate moiety. The solution absorption maximum of HSQ4 occurs at 703 nm, and the energy levels of the lowest unoccupied molecular orbital and the highest occupied molecular orbital are in the ideal range for energetically efficient electron injection and regeneration of the oxidized dye. A solar cell sensitized with HSQ4 exhibits a broad incident photo­n‐to‐current conversion efficiency spectrum, extending into the near‐infrared region with a maximum value of 80% at 720 nm, which is is the highest value reported for a squaraine dye–based dye‐sensitized solar cell. The HSQ4‐sensitized solar cell also exhibits excellent durability during light soaking, owing to the double anchors attaching the dye to the TiO2 surface and to the long alkyl chains extending outward from the surface.  相似文献   

2.
Transparent conductive oxide‐less (TCO‐less) dye‐sensitized solar cells (DSSCs) have been fabricated and characterized using nanoporous TiO2‐coated stainless steel metal mesh as flexible photoanode and cobalt bipyridyl complex (Co(bpy))‐based one electron redox shuttle electrolyte. Attempts have been made towards enhancing the efficiency of TCO‐less DSSCs to match with their TCO‐based DSSC counterparts. It has been found that surface protection of metal mesh is highly required for enhancing the efficiency of TCO‐less DSSCs specially using cobalt electrolytes as confirmed by dark current–voltage characteristics. Photocurrent action spectra clearly reveal that TCO‐based DSSCs using (Co(bpy)) electrolyte exhibits photon harvesting (incident photon to current conversion efficiency (IPCE) 52%) in the 370–450 nm wavelength region as compared to photon harvesting at peak absorption of the dye (IPCE 56% at 550 nm), which is almost the same (IPCE 47%) in the 400–610 nm wavelength region for TCO‐less DSSCs. Under similar experimental conditions, replacing indoline dye D‐205 to porphyrin‐based dye YD2‐o‐C8 led to the enhancement in the photoconversion efficiency from 3.33% to 4.84% under simulated solar irradiation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In solid‐state dye sensitized solar cells (SSDSCs) charge recombination at the dye‐hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar co‐adsorbents on the photovoltaic performance of sensitized hetero‐junction solar cells. In the present study, we investigated the effect of two zwitterionic butyric acid derivatives differing only in the polar moiety attached to their common 4 carbon‐chain acid, i.e., 4‐guanidinobutyric acid (GBA) and 4‐aminobutyric acid (ABA). These two molecules were implemented as co‐adsorbents in conjunction with Z907Na dye on the SSDSC. It was found that a Z907Na/GBA dye/co‐adsorbent combination increases both the open circuit voltage (Voc) and short‐circuit current density (Jsc) as compared to using Z907Na dye alone. The Z907Na/ABA dye/co‐adsorbent combination increases the Jsc. Impedance and transient photovoltage investigations elucidate the cause of these remarkable observations.  相似文献   

4.
An investigation of the function of an indolene‐based organic dye, termed D149, incorporated in to solid‐state dye‐sensitized solar cells using 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxypheny‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as the hole transport material is reported. Solar cell performance characteristics are unprecedented under low light levels, with the solar cells delivering up to 70% incident photon‐to‐current efficiency (IPCE) and over 6% power conversion efficiency, as measured under simulated air mass (AM) 1.5 sun light at 1 and 10 mW cm?2. However, a considerable nonlinearity in the photocurrent as intensities approach “full sun” conditions is observed and the devices deliver up to 4.2% power conversion efficiency under simulated sun light of 100 mW cm?2. The influence of dye‐loading upon solar cell operation is investigated and the thin films are probed via photoinduced absorption (PIA) spectroscopy, time‐correlated single‐photon counting (TCSPC), and photoluminescence quantum efficiency (PLQE) measurements in order to deduce the cause for the non ideal solar cell performance. The data suggest that electron transfer from the photoexcited sensitizer into the TiO2 is only between 10 to 50% efficient and that ionization of the photo excited dye via hole transfer directly to spiro‐OMeTAD dominates the charge generation process. A persistent dye bleaching signal is also observed, and assigned to a remarkably high density of electrons “trapped” within the dye phase, equivalent to 1.8 × 1017 cm?3 under full sun illumination. it is believed that this localized space charge build‐up upon the sensitizer is responsible for the non‐linearity of photocurrent with intensity and nonoptimum solar cell performance under full sun conditions.  相似文献   

5.
An optimized unsymmetrical squaraine dye 5‐carboxy‐2‐[[3‐[(2,3‐dihydro‐1, 1‐dimethyl‐3‐ethyl‐1H‐benzo[e]indol‐2‐ylidene)methyl]‐2‐hydroxy‐4‐oxo‐2‐cyclobuten‐1‐ylidene]methyl]‐3,3‐dimethyl‐1‐octyl‐3H‐indolium ( SQ02 ) with carboxylic acid as anchoring group is synthesized for dye‐sensitized solar cells (DSCs). Although the π‐framework of SQ02 is insignificantly extended compared to its antecessor squaraine dye SQ01 , photophysical measurements show that the new sensitizer has a much higher overall conversion efficiency η of 5.40% which is improved by 20% when compared to SQ01 . UV‐vis spectroscopy, cyclic voltammetry and time dependent density functional theory calculations are accomplished to rationalize the higher conversion efficiency of SQ02 . A smaller optical band gap including a higher molar absorption coefficient leads to improved light harvesting of the solar cell and a broadened photocurrent spectrum. Furthermore, all excited state orbitals relevant for the ππ* transition in SQ02 are delocalized over the carboxylic acid anchoring group, ensuring a strong electronic coupling to the conduction band of TiO2 and hence a fast electron transfer.  相似文献   

6.
Upconverting NaYF4:Yb3+,Er3+/NaYF4 core‐shell (CS) nanoparticles (NPs) were synthesized by thermal decomposition of lanthanide trifluoroacetate precursors and mixed with TiO2 NPs to fabricate dye‐sensitized solar cells (DSSCs). The CS geometry effectively prevents the capture of electrons because of the surface states and improves photo‐emission. The as‐synthesized CS NPs show upconversion (UC) luminescence, converting near infrared (NIR) light into visible light (450–700 nm), making the photon absorption by the ruthenium‐based dyes (which have little or no absorption in the NIR region) possible. The champion DSSCs fabricated using CS UC NPs (average size = 25 nm) show enhancements of ~12.5% (sensitized with black/N749 dye) and of ~5.5% (sensitized with N719 dye) in overall power conversion efficiency under AM 1.5G illumination. This variation in the enhancement of the DSSC efficiencies for black and N719 dyes is attributed to the difference in the extinction coefficient and the absorption wavelength range of dyes. Incident photon‐to‐current conversion efficiency measurements also evidently showed the photocurrent enhancement in the NIR region of the spectrum because of the UC effect. The results prove that the augmentation in efficiency is primarily due to NIR to visible spectrum modification by the fluorescent UC NPs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A cylindrical transparent conductive oxide‐less dye‐sensitized solar cell (DSSC) consisting of glass tube/stainless steel mesh–TiO2–dye/gel electrolytes/Pt‐Ti rod having capability of self‐light trapping is reported. Replacing the glass tube with heat‐shrinkable tube to reduce electrolyte gap and optical loss due to light transmission and reflection led to the enhancement in the power conversion efficiency from 2.61% to 3.91%. Profiling of the current distribution measured by laser beam‐induced current exhibited nearly the same current in the axial and radial directions, suggesting that light reflection on a cylindrical DSSC does not affect the efficiency seriously. Optimized best DSSC in this novel device architecture gave a short‐circuit current density of 11.94 mA/cm2, an open‐circuit voltage of 0.71 V and a fill factor of 0.66 leading to the power conversion efficiency of 5.58% at AM 1.5 under simulated solar irradiation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
An organic fluorophore is doped into a mesoporous TiO2 photoelectrode to absorb ultraviolet light and convert it to green light for more efficient light harvesting of N719 dye. This fluorescence conversion enables the absorption of additional green light by dye molecules by means of Förster resonance energy transfer between fluorescent compound donor and N719 dye acceptor. Owing to close fit between the emission peak of fluorophore and the absorption peak of N719 dye, the Förster resonance energy transfer effect enhances the incident photon to current conversion efficiency of the dye‐sensitized solar cells based on fluorophore‐doped TiO2 photoelectrodes. Improved power conversion efficiency (8.03–8.13%) is also achieved for the fluorophore‐doped (10−4 M) dye‐sensitized solar cells compared with a cell without the doping of fluorophore (7.63%). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Cadmium sulfide (CdS) and cadmium selenide (CdSe) quantum dots (QDs) are sequentially assembled onto a nanocrystalline TiO2 film to prepare a CdS/CdSe co‐sensitized photoelectrode for QD‐sensitized solar cell application. The results show that CdS and CdSe QDs have a complementary effect in the light harvest and the performance of a QDs co‐sensitized solar cell is strongly dependent on the order of CdS and CdSe respected to the TiO2. In the cascade structure of TiO2/CdS/CdSe electrode, the re‐organization of energy levels between CdS and CdSe forms a stepwise structure of band‐edge levels which is advantageous to the electron injection and hole‐recovery of CdS and CdSe QDs. An energy conversion efficiency of 4.22% is achieved using a TiO2/CdS/CdSe/ZnS electrode, under the illumination of one sun (AM1.5,100 mW cm?2). This efficiency is relatively higher than other QD‐sensitized solar cells previously reported in the literature.  相似文献   

10.
The optical transmission of dye‐sensitised solar cells (DSCs) can be tuned by altering the dye and/or particle size of the mesoporous TiO2 layers, to allow their application as the top device in tandem solar cells. To benefit from this semi‐transparency, parasitic optical losses by the transparent electrodes must be minimised. This work investigates the influence of using two different transparent conductors, namely, the high mobility material titanium doped indium oxide (ITiO) and fluorine doped tin oxide (FTO) as electrodes for semi‐transparent DSCs. The overall NIR transparency through the DSCs increased significantly as each FTO electrode was replaced by an ITiO electrode. This increase was from 20–45% in the 1300–700 nm wavelength range for fully FTO‐based cells, to about 60% for fully ITiO‐based cells, across the same spectrum. DSCs prepared on these electrodes exhibited short circuit currents ranging from 14·0–14·9 mA/cm2. The conversion efficiency of the cell with ITiO as both the front and rear electrodes was 5·8%, which though significant, was lower than the 8·2% attained by the cell using FTO electrodes, as a result of a lower fill factor. Improvements in the ITiO thermal stability and in the processing of the TiO2 interfacial layer are expected to improve the cell efficiency of such single DSC devices. The high current density and optical transparency of ITiO‐based DSCs make them an interesting option for tandem solar cells. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A squaraine dye is tested for novel application in a near‐infrared‐active organic photovoltaic cell that is subsequently optimized to obtain a power conversion efficiency of 2.4 ± 0.3%. The optimization utilizes an Alq3 buffer layer and macroscopic structure control through the addition of co‐solvents in the spin‐casting process. Co‐solvent addition increases the amount of aggregates present as measured through linear absorption spectroscopy, and there is a concurrent increase in both efficiency and short‐circuit current. An interpretation of the greatly increased current density is presented that describes how increased J‐aggregation likely increases hole mobility and, as a result, charge separation of the photogenerated excited state. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A new type of ruthenium complexes 6 – 8 with tridentate bipyridine–pyrazolate ancillary ligands has been synthesized in an attempt to elongate the π‐conjugated system as well as to increase the optical extinction coefficient, possible dye uptake on TiO2, and photostability. Structural characterization, photophysical studies, and corresponding theoretical approaches have been made to ensure their fundamental basis. As for dye‐sensitized solar cell applications, it was found that 6 – 8 possess a larger dye uptake of 2.4 × 10–7 mol cm–2, 1.5 × 10–7 mol cm–2, and 1.3 × 10–7 mol cm–2, respectively, on TiO2 than that of the commercial N3 dye (1.1 × 10–7 mol cm–2). Compound 8 works as a highly efficient photosensitizer for the dye‐sensitized nanocrystalline TiO2 solar cell, producing a 5.65 % solar‐light‐to‐electricity conversion efficiency (compare with 6.01 % for N3 in this study), a short‐circuit current density of 15.6 mA cm–2, an open‐circuit photovoltage of 0.64 V, and a fill factor of 0.57 under standard AM 1.5 irradiation (100 mW cm–2). These, in combination with its superior thermal and light‐soaking stability, lead to the conclusion that the concomitant tridentate binding properties offered by the bipyridine‐pyrazolate ligand render a more stable complexation, such that extended life spans of DSSCs may be expected.  相似文献   

13.
A solid‐state dye‐sensitized solar cell (ssDSSC) with 7.4% efficiency at 100 mW/cm2 is reported. This efficiency is one of the highest observed for N719 dye. High performance is achieved via a honeycomb‐like, organized mesoporous TiO2 photoanode with dual pores, high porosity, good interconnectivity, and excellent light scattering properties. The TiO2 photoanodes are prepared without any TiCl4 treatment via a one‐step, direct self‐assembly of hydrophilically preformed TiO2 nanocrystals and poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer as a titania source and a structure‐directing agent, respectively. Upon controlling the secondary forces between the polymer/TiO2 hybrid and the solvent by varying the amounts of HCl/H2O mixture or toluene, honeycomb‐like structures are generated to improve light scattering properties. Such multifunctional nanostructures with dual pores provide good pore‐filling of solid polymer electrolyte with large volume, enhanced light harvesting and reduced charge recombination, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS) analysis.  相似文献   

14.
For an ideal solar cell, a maximum solar‐to‐electrical power conversion efficiency of just over 30% is achievable by harvesting UV to near IR photons up to 1.1 eV. Dye‐sensitized solar cells (DSCs) are, however, not ideal. Here, the electrical and optical losses in the dye‐sensitized system are reviewed, and the main losses in potential from the conversion of an absorbed photon at the optical bandgap of the sensitizer to the open‐circuit voltage generated by the solar cell are specifically highlighted. In the first instance, the maximum power conversion efficiency attainable as a function of optical bandgap of the sensitizer and the “loss‐in‐potential” from the optical bandgap to the open‐circuit voltage is estimated. For the best performing DSCs with current technology, the loss‐in‐potential is ~0.75 eV, which leads to a maximum power‐conversion efficiency of 13.4% with an optical bandgap of 1.48 eV (840 nm absorption onset). Means by which the loss‐in‐potential could be reduced to 0.4 eV are discussed; a maximum efficiency of 20.25% with an optical bandgap of 1.31 eV (940 nm) is possible if this is achieved.  相似文献   

15.
A high‐energy conversion efficiency of 8.2% at 100 mW cm?2 is reported, one of the highest values for N719‐based, solid‐state, dye‐sensitized solar cells (ssDSSCs). The solar cells are based on hierarchical double‐shell nanostructures consisting of inner SnO2 hollow spheres (SHS) surrounded by outer TiO2 nanosheets (TNSs). Deposition of the TNS on the SHS outer surface is performed via solvothermal reactions in order to generate a double‐shell SHS@TNS nanostructure that provides a large surface area and suppresses recombination of photogenerated electrons. An organized mesoporous (OM)‐TiO2 film with high porosity, large pores, and good interconnectivity is also prepared via a sol‐gel process using a poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer template. This film is utilized as a matrix to disperse the double‐shell nanostructures. Such nanostructures provide good pore‐filling for solid polymer electrolytes, faster electron transfer, and enhanced light scattering, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and intensity‐modulated photocurrent spectroscopy (IMPS)/intensity‐modulated photovoltage spectroscopy (IMVS).  相似文献   

16.
The electronic coupling between a robust red algal photosystem I (PSI) associated with its light harvesting antenna (LHCI) and nanocrystalline n‐type semiconductors, TiO2 and hematite (α‐Fe2O3) is utilized for fabrication of the biohybrid dye‐sensitized solar cells (DSSC). PSI‐LHCI is immobilized as a structured multilayer over both semiconductors organized as highly ordered nanocrystalline arrays, as evidenced by FE‐SEM and XRD spectroscopy. Of all the biohybrid DSSCs examined, α‐Fe2O3/PSI‐LHCI biophotoanode operates at a highest quantum efficiency and generates the largest open circuit photo­current compared to the tandem system based on TiO2/PSI‐LHCI material. This is accomplished by immobilization of the PSI‐LHCI complex with its reducing side towards the hematite surface and nanostructuring of the PSI‐LHCI multilayer in which the subsequent layers of this complex are organized in the head‐to‐tail orientation. The biohybrid PSI‐LHCI‐DSSC is capable of sustained photoelectrochemical H2 production upon illumination with visible light above 590 nm. Although the solar conversion efficiency of the PSI‐LHCI/hematite DSSC is currently below a practical use, the system provides a blueprint for a genuinely green solar cell that can be used for molecular hydrogen production at a rate of 744 μmoles H2 mg Chl?1 h?1, placing it amongst the best performing biohybrid solar‐to‐fuel nanodevices.  相似文献   

17.
Novel conjugated organic dyes that have N,N‐dimethylaniline (DMA) moieties as the electron donor and a cyanoacetic acid (CAA) moiety as the electron acceptor were developed for use in dye‐sensitized nanocrystalline‐TiO2 solar cells (DSSCs). We attained a maximum solar‐energy‐to‐electricity conversion efficiency (η) of 6.8 % under AM 1.5 irradiation (100 mW cm–2) with a DSSC based on 2‐cyano‐7,7‐bis(4‐dimethylamino‐phenyl)hepta‐2,4,6‐trienoic acid (NKX‐2569): short‐circuit photocurrent density (Jsc) = 12.9 mA cm–2, open‐circuit voltage (Voc) = 0.71 V, and fill factor (ff) = 0.74. The high performance of the solar cells indicated that highly efficient electron injection from the excited dyes to the conduction band of TiO2 occurred. The experimental and calculated Fourier‐transform infrared (FT‐IR) absorption spectra clearly showed that these dyes were adsorbed on the TiO2 surface with the carboxylate coordination form. A molecular‐orbital calculation indicated that the electron distribution moved from the DMA moiety to the CAA moiety by photoexcitation of the dye.  相似文献   

18.
A novel Ru π‐expanded terpyridyl sensitizer, referred to as HIS‐2, is prepared based on the molecular design strategy of substitution with a moderately electron‐donating 4‐methylstyryl group onto the terpyridyl ligand. The HIS‐2 dye exhibits a slightly increased metal‐to‐ligand charge transfer (MLCT) absorption at around 600 nm and an intense π–π* absorption in the UV region compared with a black dye. Density functional theory calculations reveal that the lowest unoccupied molecular orbital (LUMO) is distributed over the terpyridine and 4‐methylstyryl moieties, which enhances the light‐harvesting capability and is appropriate for smooth electron injection from the dye to the TiO2 conduction band. The incident photon‐to‐electricity conversion efficiency spectrum of HIS‐2 exhibits better photoresponse compared with black dye over the whole spectral region as a result of the extended π‐conjugation. A DSC device based on black dye gives a short‐circuit current (JSC) of 21.28 mA cm?2, open‐circuit voltage (VOC) of 0.69 V, and fill factor (FF) of 0.72, in an overall conversion efficiency (η) of 10.5%. In contrast, an HIS‐2 based cell gives a higher JSC value of 23.07 mA cm?2 with VOC of 0.68 V, and FF of 0.71, and owing to the higher JSC value of HIS‐2, an improved η value of 11.1% is achieved.  相似文献   

19.
Two novel organic dyes have been synthesized using electron rich phenothiazine as electron donors and oligothiophene vinylene as conjugation spacers. The two dyes (2E)‐2‐cyano‐3‐(5‐(5‐((E)‐2‐(10‐(2‐ethylhexyl)‐10H‐phenothiazin‐7‐yl)vinyl)thiophen‐2‐yl)thiophen‐2‐yl)acrylic acid (PTZ‐1) and (2E)‐3‐(5‐(5‐(4,5‐bis((E)‐2‐(10‐(2‐ethylhexyl)‐10H‐phenothiazin‐3‐yl)vinyl)thiophen‐2‐yl)thiophen‐2‐yl)thiophen‐2‐yl)‐2‐cyanoacrylic acid (PTZ‐2) were fully characterized and employed in dye‐sensitized solar cells (DSCs) to explore the effect of disubstituted donors on photovoltaic (PV) performance. The solar cells sensitized by the PTZ1 dye have a high IPCE plateau of 80% and achieve a short‐circuit photocurrent density of 12.98 mA/cm2, an open‐circuit voltage of 0.713 V, and a fill factor (ff) of 66.6%, corresponding to a conversion efficiency of 6.17% under AM 1.5 100 mW/cm2 illumination. The different performance of the solar cells based on the two dyes can be understood from the studies of the electron kinetics by electrochemical impedance spectroscopy (EIS). These investigations reveal that disubstituted donors in the organic sensitizers of three or more conjugation units deteriorate the PV performance due to enhanced recombination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A new ionic liquid, 1‐vinyl‐3‐heptylimidazolium iodide (VHpII), was synthesized and applied as a redox electrolyte for dye‐sensitized solar cells. The chemical structure of the synthesized VHpII was confirmed using 1H NMR. Thermogravimetric analysis showed that the VHpII was stable for thermal stress of up to 250°C. The energy conversion efficiencies of the VHpII‐based dye‐sensitized solar cells were investigated in terms of the effect of a lithium iodide addition. A solar cell containing the redox couple of VHpII and iodine showed a conversion efficiency of 2.63% under 1 sun light intensity at AM 1.5. Adding 0.4 M LiI results in a conversion efficiency of 3.63%, which was an improvement of about 40%. The increased conversion efficiency was ascribed to an increase in external quantum efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号