共查询到20条相似文献,搜索用时 15 毫秒
1.
D. Aaron R. Barkhouse Oki Gunawan Tayfun Gokmen Teodor K. Todorov David B. Mitzi 《Progress in Photovoltaics: Research and Applications》2012,20(1):6-11
A power conversion efficiency record of 10.1% was achieved for kesterite absorbers, using a Cu2ZnSn(Se,S)4 thin‐film solar cell made by hydrazine‐based solution processing. Key device characteristics were compiled, including light/dark J–V, quantum efficiency, temperature dependence of Voc and series resistance, photoluminescence, and capacitance spectroscopy, providing important insight into how the devices compare with high‐performance Cu(In,Ga)Se2. The record kesterite device was shown to be primarily limited by interface recombination, minority carrier lifetime, and series resistance. The new level of device performance points to the significant promise of the kesterites as an emerging and commercially interesting thin‐film technology. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
2.
Hang Geng Mengyang Wang Songfan Wang Dongxing Kou Zhengji Zhou Wenhui Zhou Yafang Qi Shengjie Yuan Litao Han Yuena Meng Sixin Wu 《Advanced functional materials》2023,33(3):2210551
Abundant intrinsic defects and defect clusters in Cu2ZnSn(S,Se)4 (CZTSSe) solar cells lead to severe nonradiative recombination and limited photoelectric performance. Therefore, developing effective method to suppress the detrimental defects is the key to achieve high-efficiency solar cell. Herein, a convenient two-step cooling strategy in selenization process is reported to suppress the CuZn and SnZn defects and defect clusters synergistically. The results show that rapid cooling during section from selenization temperature to turning temperature can inhibit the volatilization of Sn and restrain the corresponding Sn-related defects, while slow cooling during the subsequent temperature section can reduce the degree of Cu-Zn disorder. Benefitting from the synergistic effect of two-step cooling, a significantly lowered concentration of SnZn and CuZn defect and their defect clusters [2CuZn+SnZn] in absorber is observed, meanwhile, a reduced band tailing effect and promoted carrier collection efficiency of the photovoltaic device is obtained. Finally, a device with improved open-circuit voltage (Voc) of 505.5 mV and efficiency of 12.87% is achieved. This study demonstrates the impact of cooling process on defects controlling for the first time and provides a simple and effective new strategy for intrinsic defect control, which may be universal in other inorganic thin film solar cells. 相似文献
3.
All‐Solution‐Processed Cu2ZnSnS4 Solar Cells with Self‐Depleted Na2S Back Contact Modification Layer 下载免费PDF全文
Youchen Gu Heping Shen Chen Ye Xuezeng Dai Qian Cui Jianbao Li Feng Hao Xiaojing Hao Hong Lin 《Advanced functional materials》2018,28(14)
The thin‐film photovoltaic material Cu2ZnSnS4 (CZTS) has drawn worldwide attention in recent years due to its earth‐abundant, nontoxic element constitution, and remarkable photovoltaic performance. Although state‐of‐the‐art power conversion efficiency is achieved by hydrazine‐based methods, effort to fabricate such devices in a high throughput, environmental‐friendly way is still highlydesired. Here a hydrazine‐free all‐solution‐processed CZTS solar cell with Na2S self‐depleted back contact modification layer for the first time is demonstrated, using a ball‐milled CZTS as light absorber, low‐temperature solution‐processed ZnO electron‐transport layer as well as silver‐nanowire transparent electrode. The inserting of Na2S self‐depleted layer is proven to effectively stabilize the CZTS/Mo interface by eliminating a detrimental phase segregation reaction between CZTS and Mo‐coated soda lime glass, thus leading to a better crystallinity of CZTS light absorbing layer, enhanced carrier transportation at CZTS/Mo interface as well as a smaller series resistance. Furthermore, the self‐depletion feature of the Na2S modification layer also averts hole‐transportation barrier within the devices. The results show the vital importance of interfacial engineering for these CZST devices and the Na2S interface layer can be extended to other optoelectronic devices using Mo contact. 相似文献
4.
Yachao Du Shanshan Wang Qingwen Tian Yuechao Zhao Xiaohuan Chang Haiqin Xiao Yueqing Deng Shiyou Chen Sixin Wu Shengzhong Liu 《Advanced functional materials》2021,31(16):2010325
The efficiency of earth-abundant Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is considerably lower than the Shockley–Queisser limit. One of the main reasons for this is the presence of deleterious cation disordering caused by SnZn antisite and 2CuZn+SnZn defect clusters, resulting in a short minority carrier lifetime and significant band tailing, leading to a large open-circuit voltage deficit, and hence, low efficiency. In this study, Ga-doping is used to increase the CZTSSe solar cell efficiency to as high as 12.3%, one of the highest for this type of cells. First-principles calculations show that the preference of Ga3+ occupying Zn and Sn sites has a benign effect on suppressing the formation of the SnZn deep donor defects by upwardly shifting the Fermi level, which is further confirmed by deep-level transient spectroscopy characterization. Besides, the Ga dopants can also form defect-dopant clusters, such as GaZn+CuZn and GaZn+GaSn, which also have positive effects on suppressing the band-tailing states. The defect engineering via Ga3+-doping may suppress the band-tailing defect with a decreased Urbach energy, elevate the minority carrier lifetime, and in the end, enhance the VOC from 473 to 515 mV. These results provide a new route to further increase CZTSSe-based solar cell efficiency by defect engineering. 相似文献
5.
E. Kask M. Grossberg R. Josepson P. Salu K. Timmo J. Krustok 《Materials Science in Semiconductor Processing》2013,16(3):992-996
To achieve higher record efficiencies for solar cells containing Cu2ZnSnSe4 (CZTSe), Cu2ZnSnS4 (CZTS) or their solid solution Cu2ZnSn(SexS1?x)4 (CZTSSe) as an absorber, it is necessary to obtain more knowledge about defect structure of these materials. In this work, admittance spectroscopy (AS) and low temperature photoluminescence spectroscopy (PL) were used for defect studies. Admittance spectroscopy in the frequency range from 20 Hz to 10 MHz was used for studies of CZTSe/CdS and CZTSSe/CdS monograin layer heterojunctions. The measurement temperature varied from 140 K to 245 K. Two defect states (labelled EA1 and EA2) were found in Cu2ZnSnSe4 and Cu2ZnSn(Se0.75S0.25)4. In different CZTSe/CdS heterojunctions the EA2 state was present at 74 meV, but the second EA1 defect state changed from 87 meV to 100 meV during time and had varying properties. In Cu2ZnSn(Se0.75S0.25)4 the EA2 state was found at 25 meV. The EA1 state at 154 meV showed the same properties as the two defect levels in CZTSe. In both cases the EA2 defect state was attributed to an acceptor defect and the EA1 state with changing properties to interface states. The detected PL bands were at 0.946 eV in CZTSe and at 1.028 eV in Cu2ZnSn(Se0.75S0.25)4. Obtained by PL measurements, defect states at 69 meV in CZTSe and at 39 meV in Cu2ZnSn(Se0.75S0.25)4 were attributed to the same acceptor defect that was found from the AS measurements. 相似文献
6.
Yongtao Qu Guillaume Zoppi Neil S. Beattie 《Progress in Photovoltaics: Research and Applications》2016,24(6):836-845
Cu2ZnSnS4 (CZTS) nanoparticle inks synthesized by the injection of metal precursors into a hot surfactant offer an attractive route to the fabrication of Earth‐abundant Cu2ZnSn(S,Se)4 (CZTSSe) thin film photovoltaic absorber layers. In this work it is shown that the chemical reaction conditions used to produce CZTS nanoparticle inks have a fundamental influence on the performance of thin film solar cells made by converting the nanoparticles to large CZTSSe grains in a selenium rich atmosphere and subsequent cell completion. The reaction time, temperature and cooling rate of the nanoparticle fabrication process are found to affect doping level, secondary phases and crystal structure respectively. Specifically, prolonging the reaction offers a new route to increase the concentration of acceptor levels in CZTSSe photovoltaic absorbers and results in higher device efficiency through an increase in the open circuit voltage and a reduction in parasitic resistance. Quenching the reaction by rapid cooling introduces a wurtzite crystal structure in the nanoparticles which significantly degrades the device performance, while elevating the reaction temperature of the nanoparticle synthesis introduces a secondary phase Cu2SnS3 in the nanoparticles and results in the highest cell efficiency of 6.26%. This is correlated with increased doping in the CZTSSe absorber and the results demonstrate a route to controlling this parameter. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd. 相似文献
7.
Kee-Jeong Yang Sammi Kim Se-Yun Kim Dae-Ho Son Jaebaek Lee Young-Ill Kim Shi-Joon Sung Dae-Hwan Kim Temujin Enkhbat JunHo Kim Juran Kim William Jo Jin-Kyu Kang 《Advanced functional materials》2021,31(29):2102238
Improving the efficiency of kesterite (Cu2ZnSn(S,Se)4; CZTSSe) solar cells requires understanding the effects of Na doping. This paper investigates these effects by applying a NaF layer at various positions within precursors. The NaF position is important because Na produces Na-related defects in the absorber and suppresses the formation of intrinsic defects. By investigating precursors with various NaF positions, the sulfo-selenization mechanism and the characteristics of defect formation are confirmed. Applying a NaF layer onto a Zn layer in a CZTSSe precursor limits Zn diffusion and suppresses Cu-Zn alloy formation, thus changing the sulfo-selenization mechanism. In addition, the surface NaF layer provides reactive Se and S to the absorber layer by generating Na2Sex and Na2Sx liquid phases during sulfo-selenization, thus limiting the incorporation of Na into the absorber and reducing the Na effects. Efficiency values of 11.16% and 11.19% are obtained for a flexible CZTSSe solar cell by applying NaF between the Zn layer and back contact and between the Cu and Sn layers, respectively. This study presents methods for doping with alkali metals and improving the efficiency of photovoltaics. 相似文献
8.
Major challenge for the fabrication of kesterite absorber thin films such as CZTSSe (Cu2ZnSn(S,Se)4) is the volatility of chalcogens. Material loss and poor morphology are two key issues during high temperature annealing, carried out for the formation of CZTSSe thin film absorber layers. The purpose of the present study is to investigate the influence of capping during the crystallization of precursor to CZTSSe films via annealing. In this work, initial precursor was synthesized from elemental constituents by ball milling. CZTSSe films were deposited by doctor's blade process. Annealing was carried out in two different atmosphere viz. vacuum and inert gas. Both sets of samples were annealed with and without capping. We found significant changes for different annealing atmospheres. Capping has a positive influence on the film properties, revealed by structural, morphological and compositional analysis. Capping reduced material loss of volatile constituents and resulted compact crystalline films. 相似文献
9.
Cu2ZnSn(S, Se)4 (CZTSSe) thin films were deposited on flexible substrates by three evaporation processes at high temperature. The chemical compositions, microstructures and crystal phases of the CZTSSe thin films were respectively characterized by inductively coupled plasma optical emission spectrometer (ICP-OES), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman scattering spectrum. The results show that the single-step evaporation method at high temperature yields CZTSSe thin films with nearly pure phase and high Sn-related phases. The elemental ratios of Cu/(Zn+Sn)=1.00 and Zn/Sn=1.03 are close to the characteristics of stoichiometric CZTSSe. There is the smooth and uniform crystalline at the surface and large grain size at the cross section for the films, and no other phases exist in the film by XRD and Raman shift measurement. The films are no more with the Sn-related phase deficiency. 相似文献
10.
Caleb K. Miskin Wei‐Chang Yang Charles J. Hages Nathaniel J. Carter Chinmay S. Joglekar Eric A. Stach Rakesh Agrawal 《Progress in Photovoltaics: Research and Applications》2015,23(5):654-659
Thin‐film solar cells using Cu2ZnSn(S,Se)4 absorber materials continue to attract increasing attention. The synthesis of kesterite Cu2ZnSnS4 nanoparticles by a modified method of hot injection is explained. Characterization of the nanoparticles by energy dispersive X‐ray spectroscopy, X‐ray diffraction, Raman, and transmission electron microscopy is presented and discussed. When suspended in an ink, coated, and processed into a device, the nanoparticles obtained by this synthesis achieve a total area (active area) efficiency of 9.0% (9.8%) using AM 1.5 illumination and light soaking. This improvement over the previous efficiency of 7.2% is attributed to the modified synthesis approach, as well as fine‐tuned conditions for selenizing the coated nanoparticles into a dense absorber layer. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
Christopher M. Proctor Chunki Kim Dieter Neher Thuc‐Quyen Nguyen 《Advanced functional materials》2013,23(28):3584-3594
Charge transport and nongeminate recombination are investigated in two solution‐processed small molecule bulk heterojunction solar cells consisting of diketopyrrolopyrrole (DPP)‐based donor molecules, mono‐DPP and bis‐DPP, blended with [6,6]‐phenyl‐C71‐butyric acid methyl ester (PCBM). While the bis‐DPP system exhibits a high fill factor (62%) the mono‐DPP system suffers from pronounced voltage dependent losses, which limit both the fill factor (46%) and short circuit current. A method to determine the average charge carrier density, recombination current, and effective carrier lifetime in operating solar cells as a function of applied bias is demonstrated. These results and light intensity measurements of the current‐voltage characteristics indicate that the mono‐DPP system is severely limited by nongeminate recombination losses. Further analysis reveals that the most significant factor leading to the difference in fill factor is the comparatively poor hole transport properties in the mono‐DPP system (2 × 10?5 cm2 V?1 s?1 versus 34 × 10?5 cm2 V?1 s?1). These results suggest that future design of donor molecules for organic photovoltaics should aim to increase charge carrier mobility thereby enabling faster sweep out of charge carriers before they are lost to nongeminate recombination. 相似文献
12.
《Progress in Photovoltaics: Research and Applications》2017,25(2):184-191
A unique non‐destructive characterization method for apparent bandgap imaging in photovoltaic (PV) devices based on acquisition of two electroluminescence (EL) images in different spectral ranges is presented. The method consists of a calibration procedure and a bandgap imaging procedure. Calibration has to be performed once per module type and EL imaging setup, and must provide a relation between the bandgap and the ratio between two spectrally independent EL images. After calibration, bandgap imaging only requires acquisition of two spectrally independent EL images followed by image processing, making the method very fast and suitable for in‐line PV module characterization with regard to spatial (in)homogeneity and production process stability. The method is demonstrated on a commercial state‐of‐the‐art Cu(In,Ga)Se2 PV module where apparent bandgap fluctuations between 1.07 and 1.15 eV are detected. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
Francisco Gallego‐Gómez Eva M. García‐Frutos José M. Villalvilla José A. Quintana Enrique Gutierrez‐Puebla Angeles Monge María A. Díaz‐García Berta Gómez‐Lor 《Advanced functional materials》2011,21(4)
A new carbazole‐related small molecule exhibiting self‐assembly into ordered nanostructures in solution‐processed cast films has been synthesized and its charge‐photogeneration and ‐transport properties have been investigated. Large photoconductivity was measured in the amorphous state while an enormous improvement in the photoconduction properties was observed when the molecules spontaneously organized. Photocurrents increased upon self‐assembly by up to four orders of magnitude, mostly due to the drastic enhancement of the charge photogeneration. A greatly favorable arrangement of the aromatic cores in the resulting nanostructures, which were characterized by X‐ray analysis, may explain these improvements. Photocurrents of mA cm?2, on/off ratios of 104 and quantum efficiencies of unity at low field and light intensity, which are among the best values reported to date, along with the simplicity of fabrication, give this readily‐available organic system great potential for use in plastic optoelectronic devices. 相似文献
14.
Francisco Gallego‐Gómez Eva M. García‐Frutos José M. Villalvilla José A. Quintana Enrique Gutierrez‐Puebla Angeles Monge María A. Díaz‐García Berta Gómez‐Lor 《Advanced functional materials》2011,21(4):738-745
A new carbazole‐related small molecule exhibiting self‐assembly into ordered nanostructures in solution‐processed cast films has been synthesized and its charge‐photogeneration and ‐transport properties have been investigated. Large photoconductivity was measured in the amorphous state while an enormous improvement in the photoconduction properties was observed when the molecules spontaneously organized. Photocurrents increased upon self‐assembly by up to four orders of magnitude, mostly due to the drastic enhancement of the charge photogeneration. A greatly favorable arrangement of the aromatic cores in the resulting nanostructures, which were characterized by X‐ray analysis, may explain these improvements. Photocurrents of mA cm?2, on/off ratios of 104 and quantum efficiencies of unity at low field and light intensity, which are among the best values reported to date, along with the simplicity of fabrication, give this readily‐available organic system great potential for use in plastic optoelectronic devices. 相似文献
15.
Xingyu Pan Yanlin Pan Luyan Shen Lijun Wang Rui Wang Guoen Weng Jinchun Jiang Xiaobo Hu Shaoqiang Chen Pingxiong Yang Junhao Chu Jiahua Tao 《Advanced functional materials》2023,33(22):2214511
Quasi-one-dimensional antimony sulfoselenide (Sb2(S,Se)3) semiconductor is one of the most promising light-harvesting materials owing to its simple phase and tunable absorption spectra. However, the oriented [Sb4(S,Se)6]n ribbons of Sb2(S,Se)3 thin films nearly horizontally stacked in parallel to the substrate severely hinders the transport of carriers, yet is critical to control the absorber orientation growth for high-performance Sb2(S,Se)3 solar cells. Herein, a new close spaced sublimated (CSS) CdS buffer layer with high crystallization is introduced for the development of all-vacuum-processed Sb2(S,Se)3 solar cells that attempt to induce the orientation of Sb2(S,Se)3 absorbers to achieve effective carrier transport and reduce the adverse effects. The resulting Sb2(S,Se)3 solar cells with CSS-CdS buffer layers exhibit a prominent [221] orientation and better heterointerfaces as well as lower defect densities and longer capture lifetime compared to the commonly solar cells used chemically deposited CdS buffer layers, as a result of suppressed the non-radiative recombination. The optimized solar cells, yield up to an efficiency of 7.12%, is the first for an all-vacuum-process for Sb2(S,Se)3 solar cells. 相似文献
16.
Gee Yeong Kim Dae‐Ho Son Trang Thi Thu Nguyen Seokhyun Yoon Minsu Kwon Chan‐Wook Jeon Dae‐Hwan Kim Jin‐Kyu Kang William Jo 《Progress in Photovoltaics: Research and Applications》2016,24(3):292-306
CZTSSe thin‐film absorbers were grown by stacked ZnS/SnS/Cu sputtering with compound targets, and the precursors were annealed in a furnace with a Se atmosphere. We controlled the thickness of the ZnS precursor layer for the CZTSSe thin films in order to reduce the secondary phases and to improve the performance of the devices. The optimal value of the ZnS precursor thickness was determined for the CZTSSe absorbers, and this configuration showed an efficiency of up to 9.1%. In this study, we investigated the depth profiles of the samples in order to determine the presence of secondary phases in the CZTSSe thin films by Raman spectroscopy and Kelvin probe force microscopy. Cu2SnSe3, ZnSe, and MoSe2 secondary phases appeared near the back contact, and the work function distribution of the CZTSSe thin‐film surface and the secondary phase distribution were different depending on the depths of the absorber layer. This phase characterization allows us to describe the effects that changes in the thickness of the ZnS precursor can have on the performance of the CZTSSe thin‐film solar cells. Although it is important to identify the phases, the effects of secondary phases and point defects are not yet fully understood, even in optimal devices. Therefore, phase identification that is based on the work function and the results obtained from the Raman spectra in terms of the depth profile are instrumental to improve the surface and interface of CZTSSe thin‐film solar cells. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
《Progress in Photovoltaics: Research and Applications》2017,25(1):58-66
A method for fabricating high‐efficiency Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is presented, and it is based on a non‐explosive, low‐cost, and simple solution process followed by a two‐step heat treatment. 2‐Methoxyethanol was used as a solvent, and Cu, Zn, Sn, chloride salts, and thiourea were used as solutes. A CZTSSe absorber was prepared by sulfurising and then selenising an as‐coated Cu2ZnSnS4 (CZTS) film. Sulfurisation in a sulfur vapour filled furnace for a long time (2 h) enhanced the crystallisation of the as‐coated CZTS film and improved the stability of the CZTS precursor, and selenisation promoted further grain growth to yield a void‐free CZTSSe film. Segregation of Cu and S at the grain boundaries, the absence of a fine‐grain bottom layer, and the large grain size of the CZTSSe absorber were the main factors that enhanced the grain‐to‐grain transport of carriers and consequently the short‐circuit current (Jsc ) and efficiency. The efficiency of the CZTS solar cell was 5.0%, which increased to 10.1% after selenisation. For the 10.1% CZTSSe solar cell, the external quantum efficiency was approximately 80%, the open‐circuit voltage was 450 mV, the short‐circuit current was 36.5 mA/cm2, and the fill factor was 61.9%. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
Impact of the Cd2+ treatment on the electrical properties of Cu2ZnSnSe4 and Cu(In,Ga)Se2 solar cells
Khaled Ben Messaoud Marie Buffire Guy Brammertz Hossam ElAnzeery Souhaib Oueslati Jonathan Hamon Bas J. Kniknie Marc Meuris Mosbah Amlouk Jef Poortmans 《Progress in Photovoltaics: Research and Applications》2015,23(11):1608-1620
The present contribution aims at determining the impact of modifying the properties of the absorber/buffer layer interface on the electrical performance of Cu2ZnSnSe4 (CZTSe) thin‐film solar cells, by using a Cd2+ partial electrolyte (Cd PE) treatment of the absorber before the buffer layer deposition. In this work, CZTSe/CdS solar cells with and without Cd PE treatment were compared with their respective Cu(In,Ga)Se2 (CIGSe)/CdS references. The Cd PE treatment was performed in a chemical bath for 7 min at 70 °C using a basic solution of cadmium acetate. X‐ray photoemission spectroscopy measurements have revealed the presence of Cd at the absorber surface after the treatment. The solar cells were characterized using current density–voltage (J–V), external quantum efficiency, and drive‐level capacitance profiling measurements. For the CZTSe‐based devices, the fill factor increased from 57.7% to 64.0% when using the Cd PE treatment, leading to the improvement of the efficiency (η) from 8.3% to 9.0% for the best solar cells. Similar observations were made on the CIGSe solar cell reference. This effect comes from a considerable reduction of the series resistance (RS) of the dark and light J–V, as determined using the one‐diode model. The crossover effect between dark and light J–V curves is also significantly reduced by Cd PE treatment. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.
Teodor K. Todorov Oki Gunawan Tayfun Gokmen David B. Mitzi 《Progress in Photovoltaics: Research and Applications》2013,21(1):82-87
The remarkable potential for inexpensive upscale of solution processing technologies is expected to enable chalcogenide‐based photovoltaic systems to become more widely adopted to meet worldwide energy needs. Here, we report a thin‐film solar cell with solution‐processed Cu(In,Ga)(S,Se)2 (CIGS) absorber. The power conversion efficiency of 15.2% is the highest published value for a pure solution deposition technique for any photovoltaic absorber material and is on par with the best nonvacuum‐processed CIGS devices. We compare the performance of our cell with a world champion vacuum‐deposited CIGS cell and perform detailed characterization, such as biased quantum efficiency, temperature‐dependent electrical measurement, time‐resolved photoluminescence, and capacitance spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
20.
Mingrui He Jialiang Huang Jianjun Li Jun Sung Jang Umesh P. Suryawanshi Chang Yan Kaiwen Sun Jialin Cong Yu Zhang Henner Kampwerth Mahesh P. Suryawanshi Jinhyeok Kim Martin A. Green Xiaojing Hao 《Advanced functional materials》2021,31(40):2104528
The performance of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cell is known to be severely limited by the nonradiative recombination near the heterojunction interface and within the bulk of the CZTSSe absorber resulting from abundant recombination centers and limited carrier collection efficiency. Herein, nonradiative recombination is simultaneously reduced by incorporating small amounts of Ge and Cd into the CZTSSe absorber. Incorporation of Ge effectively increases the p-type doping, thus successfully improving the bulk conductance and reducing the recombination in the CZTSSe bulk via enhanced quasi-Fermi level splitting, while the incorporation of Cd greatly reduces defects near the junction region, enabling larger depletion region width and better carrier collection efficiency. The combined effects of Cd and Ge incorporation give rise to systematic improvement in open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF), enabling a high conversion efficiency of 11.6%. This study highlights the multiple cation incorporation strategy for systematically manipulating the opto-electronic properties of kesterite materials, which may also be applicable to other semiconductors. 相似文献