首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Charge carrier injection and transport in polymer light‐emitting diodes (PLEDs) is strongly limited by the energy level offset at organic/(in)organic interfaces and the mismatch in electron and hole mobilities. Herein, these limitations are overcome via electrochemical doping of a light‐emitting polymer. Less than 1 wt% of doping agent is enough to effectively tune charge injection and balance and hence significantly improve PLED performance. For thick single‐layer (1.2 µm) PLEDs, dramatic reductions in current and luminance turn‐on voltages (VJ = 11.6 V from 20.0 V and VL = 12.7 V from 19.8 V with/without doping) accompanied by reduced efficiency roll‐off are observed. For thinner (<100 nm) PLEDs, electrochemical doping removes a thickness dependence on VJ and VL, enabling homogeneous electroluminescence emission in large‐area doped devices. Such efficient charge injection and balance properties achieved in doped PLEDs are attributed to a strong electrochemical interaction between the polymer and the doping agents, which is probed by in situ electric‐field‐dependent Raman spectroscopy combined with further electrical and energetic analysis. This approach to control charge injection and balance in solution‐processed PLEDs by low electrochemical doping provides a simple yet feasible strategy for developing high‐quality and efficient lighting applications that are fully compatible with printing technologies.  相似文献   

3.
The ability to control organic‐organic interfaces in conjugated polymer blends is critical for further device improvement. Here, we control the phase separation in blends of poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) (F8BT) and poly(9,9‐di‐n‐octylfluorene‐alt‐(1,4‐phenylene‐((4‐sec‐butylphenyl)imino)‐1,4‐phenylene) (TFB) via chemical modification of the substrate by microcontact printing of octenyltrichlorosilane molecules. The lateral phase‐separated structures in the blend film closely replicate the underlying micrometer‐scale chemical pattern. We found nanometer‐scale vertical segregation of the polymers within both lateral domains, with regions closer to the substrate being substantially pure phases of either polymer. Such phase separation has important implications for the performance of light‐emitting diodes fabricated using these patterned blend films. In the absence of a continuous TFB wetting layer at the substrate interface, as typically formed in spin‐coated blend films, charge carrier injection is confined in the well‐defined TFB‐rich domains. This confinement leads to high electroluminescence efficiency, whereas the overall reduction in the roughness of the patterned blend film results in slower decay of device efficiency at high voltages. In addition, the amount of surface out‐coupling of light in the forward direction observed in these blend devices is found to be strongly correlated to the distribution of periodicity of the phase‐separated structures in the active layer.  相似文献   

4.
A variety of N ‐hydrogenated/N ‐methylated pyridinium salts are elaborately designed and synthesized. Thermogravimetric and X‐ray photoelectron spectra analysis indicate the intensities of the N? H covalent bonds are strengthened step‐by‐step from 3,3′‐(5′‐(3‐(pyridin‐3‐yl)phenyl)‐[1,1′:3′,1″‐terphenyl]‐3,3″‐diyl)dipyridine (Tm)‐HCl to Tm‐HBr and then Tm‐TfOH, which results in gradually improved cathode interfacial modification abilities. The larger dipole moments of N+? H containing moieties compared to those of the N+? CH3 endow them with more preferable interfacial modification abilities. Electron paramagnetic resonance signals reveal the existence of radical anions in the solid state of Tm‐TfOH, which enables its self‐doping property and high electron mobility up to 1.67 × 10?3 cm2 V?1 s?1. Using the Tm‐TfOH as the cathode interfacial layers (CILs), the phenyl‐substituted poly(para ‐phenylene vinylene)‐based all‐solution‐processed polymer light‐emitting diodes (PLEDs) achieve more preferable device performances than the poly[(9,9‐bis(3′‐(N ,N ‐dimethylamino)propyl)‐2,7‐fluorene)‐alt ‐2,7‐(9,9‐dioctylfluorene)]‐based ones, i.e., high current density of nearly 300 mA cm?2, very high luminance over 15 000 cd m?2 at a low bias of 5 V. Remarkably, the thickness of the CILs has little impact on the device performance and high efficiencies are maintained even at thicknesses up to 85 nm, which is barely realized in PLEDs with small‐molecule‐based electron transporting layers.  相似文献   

5.
6.
A blend of two hole‐dominant polymers is created and used as the light emissive layer in light‐emitting diodes to achieve high luminous efficiency up to 22 cd A?1. The polymer blend F81?xSYx is based on poly(9,9‐dioctylfluorene) (F8) and poly(para‐phenylene vinylene) derivative superyellow (SY). The blend system exhibits a preferential vertical concentration distribution. The resulting energy landscape modifies the overall charge transport behavior of the blend emissive layer. The large difference between the highest unoccupied molecular orbital levels of F8 (5.8 eV) and SY (5.3 eV) introduces hole traps at SY sites within the F8 polymer matrix. This slows down the hole mobility and facilitates a balance between the transport behavior of both the charge carriers. The balance due to such energy landscape facilitates efficient formation of excitons within the emission zone well away from the cathode and minimizes the surface quenching effects. By bringing the light‐emission zone in the middle of the F81?xSYx film, the bulk of the film is exploited for the light emission. Due to the charge trapping nature of SY molecules in F8 matrix and pushing the emission zone in the center, the radiative recombination rate also increases, resulting in excellent device performance.  相似文献   

7.
Electron‐injecting interlayers (ILs) which are stable in air, inject electrons efficiently, block holes, and block quenching of excitons, are very important to realize efficient inverted polymer light‐emitting diodes (IPLEDs). Two air‐stable polymer electron‐injecting interlayers (ILs), branched polyethyleneimine (PEI) and polyethyleneimine ethoxylated (PEIE) for use in IPLEDs are introduced, and the roles of the ILs in IPLEDs comparing these with a conventional Cs2CO3 IL are elucidated. These polymer ILs can reduce the electron injection barrier between ZnO and emitting layer by decreasing the work function (WF) of underlying ZnO, thereby effectively facilitating electron injection into the emitting layer. WF of ZnO covered by PEI is found to be lower than that covered by PEIE due to higher [N+]/[C] ratio of PEI. Furthermore, they can block the quenching of excitons and increase the luminous efficiency of devices. Thus, IPLEDs with PEI IL of optimum thickness (8 nm) show current efficiency (13.5 cd A–1), which is dramatically higher than that of IPLEDs with a Cs2CO3 IL (8 cd A‐1).  相似文献   

8.
By introducing a neat Pt(II)‐based phosphor with a remarkably short decay lifetime, a simplified doping‐free phosphorescent organic light‐emitting diode (OLED) with a forward viewing external quantum efficiency (EQE) and power efficiency of 20.3 ± 0.5% and 63.0 ± 0.4 lm W?1, respectively, is demonstrated. A quantitative analysis of how triplet‐triplet annihilation (TTA) and triplet‐polaron annihilation (TPA) affect the device EQE roll‐off at high current densities is performed. The contributions from loss of charge balance associated with charge leakage and field‐induced exciton dissociation are found negligible. The rate constants kTTA and kTPA are determined by time‐resolved photoluminescence experiments of a thin film and an electrically‐driven unipolar device, respectively. Using the parameters extracted experimentally, the EQE is modeled versus electric current characteristics of the OLEDs by taking both TTA and TPA into account. Based on this model, the impacts of the emitter lifetime, quenching rate constants, and exciton formation zone upon device efficiency are analyzed. It is found that the short lifetime of the neat emitter is key for the reduction of triplet quenching.  相似文献   

9.
Doping of graphene is a viable route toward enhancing its electrical conductivity and modulating its work function for a wide range of technological applications. In this work, the authors demonstrate facile, solution‐based, noncovalent surface doping of few‐layer graphene (FLG) using a series of molecular metal‐organic and organic species of varying n‐ and p‐type doping strengths. In doing so, the authors tune the electronic, optical, and transport properties of FLG. The authors modulate the work function of graphene over a range of 2.4 eV (from 2.9 to 5.3 eV)—unprecedented for solution‐based doping—via surface electron transfer. A substantial improvement of the conductivity of FLG is attributed to increasing carrier density, slightly offset by a minor reduction of mobility via Coulomb scattering. The mobility of single layer graphene has been reported to decrease significantly more via similar surface doping than FLG, which has the ability to screen buried layers. The dopant dosage influences the properties of FLG and reveals an optimal window of dopant coverage for the best transport properties, wherein dopant molecules aggregate into small and isolated clusters on the surface of FLG. This study shows how soluble molecular dopants can easily and effectively tune the work function and improve the optoelectronic properties of graphene.  相似文献   

10.
Cesium lead halide perovskite quantum dots (PQDs) have attracted significant interest for optoelectronic applications in view of their high brightness and narrow emission linewidth at visible wavelengths. A remaining challenge is the degradation of PQDs during purification from the synthesis solution. This is attributed to proton transfer between oleic acid and oleylamine surface capping agents that leads to facile ligand loss. Here, a new synthetic method is reported that enhances the colloidal stability of PQDs by capping them solely using oleic acid (OA). Quaternary alkylammonium halides are used as precursors, eliminating the need for oleylamine. This strategy enhances the colloidal stability of OA capped PQDs during purification, allowing us to remove excess organic content in thin films. Inverted red, green, and blue PQD light‐emitting diodes (LED) are fabricated for the first time with solution‐processed polymer‐based hole transport layers due to higher robustness of OA capped PQDs to solution processing. The blue and green LEDs exhibit threefold and tenfold improved external quantum efficiency (EQE), respectively, compared to prior related reports for amine/ammonium capped cross‐linked PQDs. The brightest blue LED based on all inorganic CsPb(Br1?xClx)3 PQDs is also reported.  相似文献   

11.
12.
The control of the doping ratio of a blue‐emitting matrix by an orange emitter with high accuracy still remains very challenging in the development of reproducible white organic light‐emitting diodes (WOLEDs). In this work, the development of an organophosphorus dopant that presents a high doping rate in order to reach white emission is reported. The increase of the doping rate has a small impact on the CIE co‐ordinates and on the EQE. These results are very appealing towards the development of “easy‐to‐make” WOLEDS.  相似文献   

13.
We report on the successful demonstration of high performance polymer light‐emitting diodes (PLEDs) using a low temperature, plastic lamination process. Blue‐ and red‐emitting PLEDs were fabricated by laminating different luminescent polymers and organic compounds together to form the active media. This unique approach eliminates the issue of organic solvent compatibility with the organic layers for fabricating multi‐layer PLEDs. In addition, a template activated surface process (TAS) has been successfully applied to generate an optimum interface for the low temperature lamination process. Atomic force microscopy analysis reveals a distinct difference in the surfaces created by the TAS and the spin‐coating process. This observation coupled with the device data confirms the importance of the activated interface in the lamination process.  相似文献   

14.
15.
Alkoxy side‐chain tethered polyfluorene conjugated polyelectrolyte (CPE), poly[(9,9‐bis((8‐(3‐methyl‐1‐imidazolium)octyl)‐2,7‐fluorene)‐alt‐(9,9‐bis(2‐(2‐methoxyethoxy)ethyl)‐fluorene)] dibromide (F8imFO4), is utilized to obtain CPE‐hybridized ZnO nanoparticles (NPs) (CPE:ZnO hybrid NPs). The surface defects of ZnO NPs are passivated through coordination interactions with the oxygen atoms of alkoxy side‐chains and the bromide anions of ionic pendent groups from F8imFO4 to the oxygen vacancies of ZnO NPs, and thereby the fluorescence quenching at the interface of yellow‐emitting poly(p‐phenylene vinylene)/CPE:ZnO hybrid NPs is significantly reduced at the CPE concentration of 4.5 wt%. Yellow‐emitting polymer light‐emitting diodes (PLEDs) with CPE(4.5 wt%):ZnO hybrid NPs as a cathode interfacial layer show the highest device efficiencies of 11.7 cd A?1 at 5.2 V and 8.6 lm W?1 at 3.8 V compared to the ZnO NP only (4.8 cd A?1 at 7 V and 2.2 lm W?1 at 6.6 V) or CPE only (7.3 cd A?1 at 5.2 V and 4.9 lm W?1 at 4.2 V) devices. The results suggest here that the CPE:ZnO hybrid NPs has a great potential to improve the device performance of organic electronics.  相似文献   

16.
This work presents a new device architecture integrating multiple poly(methyl methacrylate) (PMMA) electron‐blocking layers (EBL) in quantum dot light‐emitting diodes (QD‐LEDs). The device utilizes red‐emitting CdSe/ZnS QD with a novel structure where multiple PMMA EBLs are sandwiched between a pair of QD layers. A systematic optimization of QD‐LED structures has shown that a device including two PMMA and three QD layers performs the best, achieving a current efficiency of 17.8 cd A?1 and a luminance of 194 038 cd m?2. Numerical simulation of a simplified model of the proposed QD‐LED structure verifies that the structure consisting of two PMMA and three QD layers provides significant improvement in electroluminescent intensity. The simulation provides further insight into the origin of the effect of the PMMA EBL by showing that the addition of PMMA EBL reduces the electron leakage from the active QD region and enhances electron confinement, leading to an increased electron concentration in the QD active layers and a higher radiative recombination rate. The experimental and theoretical studies presented in this work demonstrate that multiple layers of PMMA can act as efficient EBLs in the fabrication of QD‐LEDs of improved performance.  相似文献   

17.
18.
The band‐gap engineering of doped ZnO nanowires is of the utmost importance for tunable light‐emitting‐diode (LED) applications. A combined experimental and density‐functional theory (DFT) study of ZnO doping by copper (Zn2+ substitution by Cu2+) is presented. ZnO:Cu nanowires are epitaxially grown on magnesium‐doped p‐GaN by electrochemical deposition. The heterojunction is integrated into a LED structure. Efficient charge injection and radiative recombination in the Cu‐doped ZnO nanowires are demonstrated. In the devices, the nanowires act as the light emitters. At room temperature, Cu‐doped ZnO LEDs exhibit low‐threshold emission voltage and electroluminescence emission shifted from the ultraviolet to violet–blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the copper content in the ZnO nanoemitters. The shift is explained by DFT calculations with the appearance of copper d states in the ZnO band‐gap and subsequent gap reduction upon doping. The presented data demonstrate the possibility to tune the band‐gap of ZnO nanowire emitters by copper doping for nano‐LEDs.  相似文献   

19.
n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号