首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium sulfide (CdS) and cadmium selenide (CdSe) quantum dots (QDs) are sequentially assembled onto a nanocrystalline TiO2 film to prepare a CdS/CdSe co‐sensitized photoelectrode for QD‐sensitized solar cell application. The results show that CdS and CdSe QDs have a complementary effect in the light harvest and the performance of a QDs co‐sensitized solar cell is strongly dependent on the order of CdS and CdSe respected to the TiO2. In the cascade structure of TiO2/CdS/CdSe electrode, the re‐organization of energy levels between CdS and CdSe forms a stepwise structure of band‐edge levels which is advantageous to the electron injection and hole‐recovery of CdS and CdSe QDs. An energy conversion efficiency of 4.22% is achieved using a TiO2/CdS/CdSe/ZnS electrode, under the illumination of one sun (AM1.5,100 mW cm?2). This efficiency is relatively higher than other QD‐sensitized solar cells previously reported in the literature.  相似文献   

2.
Semiconductor materials with an inverse opal structure have previously demonstrated promise for photovoltaic applications. However, their use in solar cells is still restricted by their poor electron transfer properties. Here, highly conductive CdS inverse opal structures are prepared via a multistep process, where CdS inverse opal backbones are first built up on conductive glass substrates via co‐deposition of CdS quantum dots and polystyrene microspheres, followed by calcination, after which subsequent electrodepositon and annealing treatments are applied to transform the fine constituent nanocrystals into larger ones, thus considerably enhancing the electrical conductivity. The obtained CdS networks are tested as anodes in photochemical solar cells and demonstrate conversion efficiency values up to 2.00% under the illumination of one sun. After depositing an additional CdSe layer, the conversion efficiency of the structures is further increased to 2.47%.  相似文献   

3.
Thin film solar cells that are low in cost but still reasonably efficient comprise an important strategy for reaching price‐performance ratios competitive with fossil fuel electrical generation. Sensitized solar cells – most commonly dye but also semiconductor nanocrystal sensitized – are a thin film device option benefitting from lost cost material components and processing. Nanocrystal sensitized solar cells are predicted to outpace their dye‐based counterparts, but suffer from limited availability of approaches for integrating the nano‐sensitizers within a mesoporous oxide anode, which effectively limits the choice of sensitizer to those that are synthesized in situ or those that are easily incorporated into the oxide framework. The latter methods favor small, symmetric nanocrystals, while highly asymmetric semiconductors (e.g., nanowires, tetrapods, carbon nanotubes) have to date found limited utility in sensitized solar‐cell devices, despite their promise as efficient solar energy converters. Here, a new strategy for solar cell fabrication is demonstrated that is independent of sensitizer geometry. Nanocrystal‐sensitized solar cells are fabricated from either CdSe semiconductor quantum dots or nanowires with facile control over nanocrystal loading. Without substantial optimization and using low processing temperatures, efficiencies approaching 2% are demonstrated. Furthermore, the significance of a ‘geometry‐independent’ fabrication strategy is shown by revealing that nanowires afford important advantages compared to quantum dots as sensitizers. For equivalent nanocrystal masses and otherwise identical devices, nanowire devices yield higher power conversion efficiencies, resulting from both enhanced light harvesting efficiencies for all overlapping wavelengths and internal quantum efficiencies that are more than double those obtained for quantum dot devices.  相似文献   

4.
The bandgap in graphene‐based materials can be tuned from 0 eV to that of benzene by changing size and/or surface chemistry, making it a rising carbon‐based fluorescent material. Here, the surface chemistry of small size graphene (graphene quantum dots, GQDs) is tuned programmably through modification or reduction and green luminescent GQDs are changed to blue luminescent GQDs. Several tools are employed to characterize the composition and morphology of resultants. More importantly, using this system, the luminescence mechanism (the competition between both the defect state emission and intrinsic state emission) is explored in detail. Experiments demonstrate that the chemical structure changes during modification or reduction suppresses non‐radiative recombination of localized electron‐hole pairs and/or enhances the integrity of surface π electron network. Therefore the intrinsic state emission plays a leading role, as opposed to defect state emission in GQDs. The results of time‐resolved measurements are consistent with the suggested PL mechanism. Up‐conversion PL of GQDs is successfully applied in near‐IR excitation for bioimaging.  相似文献   

5.
Owing to their small size, biocompatibility, unique and tunable photoluminescence, and physicochemical properties, graphene quantum dots (GQDs) are an emerging class of zero‐dimensional materials promising a wide spectrum of novel applications in bio‐imaging, optical, and electrochemical sensors, energy devices, and so forth. Their widespread use, however, is largely limited by the current lack of high yield synthesis methods of high‐quality GQDs. In this contribution, a facile method to electrochemically exfoliate GQDs from three‐dimensional graphene grown by chemical vapor deposition (CVD) is reported. Furthermore, the use of such GQDs for sensitive and specific detection of ferric ions is demonstrated.  相似文献   

6.
The relationship between the exciton binding energies of several pure organic dyes and their chemical structures is explored using density functional theory calculations in order to optimize the molecular design in terms of the light‐to‐electric energy‐conversion efficiency in dye‐sensitized solar cell devices. Comparing calculations with measurements reveals that the exciton binding energy and quantum yield are inversely correlated, implying that dyes with lower exciton binding energy produce electric current from the absorbed photons more efficiently. When a strong electron‐accepting moiety is inserted in the middle of the dye framework, the light‐to‐electric energy‐conversion behavior significantly deteriorates. As verified by electronic‐structure calculations, this is likely due to electron localization near the electron‐deficient group. The combined computational and experimental design approach provides insight into the functioning of organic photosensitizing dyes for solar‐cell applications. This is exemplified by the development of a novel, all‐organic dye (EB‐01) exhibiting a power conversion efficiency of over 9%.  相似文献   

7.
A roll‐to‐roll (R2R) transfer technique is employed to improve the electrical properties of transferred graphene on flexible substrates using parylene as an interfacial layer. A layer of parylene is deposited on graphene/copper (Cu) foils grown by chemical vapor deposition and are laminated onto ethylene vinyl acetate (EVA)/poly(ethylene terephthalate). Then, the samples are delaminated from the Cu using an electrochemical transfer process, resulting in flexible and conductive substrates with sheet resistances of below 300 Ω sq?1, which is significantly better (fourfold) than the sample transferred by R2R without parylene (1200 Ω sq?1). The characterization results indicate that parylene C and D dope graphene due to the presence of chlorine atoms in their structure, resulting in higher carrier density and thus lower sheet resistance. Density functional theory calculations reveal that the binding energy between parylene and graphene is stronger than that of EVA and graphene, which may lead to less tear in graphene during the R2R transfer. Finally, organic solar cells are fabricated on the ultrathin and flexible parylene/graphene substrates and an ultra‐lightweight device is achieved with a power conversion efficiency of 5.86%. Additionally, the device shows a high power per weight of 6.46 W g?1 with superior air stability.  相似文献   

8.
An investigation of the function of an indolene‐based organic dye, termed D149, incorporated in to solid‐state dye‐sensitized solar cells using 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxypheny‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as the hole transport material is reported. Solar cell performance characteristics are unprecedented under low light levels, with the solar cells delivering up to 70% incident photon‐to‐current efficiency (IPCE) and over 6% power conversion efficiency, as measured under simulated air mass (AM) 1.5 sun light at 1 and 10 mW cm?2. However, a considerable nonlinearity in the photocurrent as intensities approach “full sun” conditions is observed and the devices deliver up to 4.2% power conversion efficiency under simulated sun light of 100 mW cm?2. The influence of dye‐loading upon solar cell operation is investigated and the thin films are probed via photoinduced absorption (PIA) spectroscopy, time‐correlated single‐photon counting (TCSPC), and photoluminescence quantum efficiency (PLQE) measurements in order to deduce the cause for the non ideal solar cell performance. The data suggest that electron transfer from the photoexcited sensitizer into the TiO2 is only between 10 to 50% efficient and that ionization of the photo excited dye via hole transfer directly to spiro‐OMeTAD dominates the charge generation process. A persistent dye bleaching signal is also observed, and assigned to a remarkably high density of electrons “trapped” within the dye phase, equivalent to 1.8 × 1017 cm?3 under full sun illumination. it is believed that this localized space charge build‐up upon the sensitizer is responsible for the non‐linearity of photocurrent with intensity and nonoptimum solar cell performance under full sun conditions.  相似文献   

9.
Incorporating colloidal CdSe quantum dots (QDs) into CdSe nanowire (NW)‐based photoelectrochemical solar cells increases their incident‐photon‐to‐carrier conversion efficiencies (IPCE) from 13% to 25% at 500 nm. While the effect could, in principle, stem from direct absorption and subsequent carrier generation by QDs, the overall IPCE increase occurs across the entire visible spectrum, even at wavelengths where the dots do not absorb light. This beneficial effect originates from an interplay between NWs and QDs where the latter fill voids between interconnected NWs, providing electrically accessible conduits, in turn, enabling better carrier transport to electrodes. The presence of QDs furthermore reduces the residual polarization anisotropy of random NW networks. Introducing QDs therefore addresses an important limiting constraint of NW photoelectrochemical solar cells. The effect appears to be general and may aid the future design and implementation of other NW‐based photovoltaics.  相似文献   

10.
Graphene‐semiconductor nanocomposites, considered as a kind of most promising photocatalysts, have shown remarkable performance and drawn significant attention in the field of photo‐driven chemical conversion using solar energy, due to the unique physicochemical properties of graphene. The photocatalytic enhancement of graphene‐based nanocomposites is caused by the reduction of the recombination of electron‐hole pairs, the extension of the light absorption range, increase of absorption of light intensity, enhancement of surface active sites, and improvement of chemical stability of photocatalysts. Recent progress in the photocatalysis development of graphene‐based nanocomposites is highlighted and evaluated, focusing on the mechanism of graphene‐enhanced photocatalytic activity, the understanding of electron transport, and the applications of graphene‐based photocatalysts on water splitting, degradation or oxidization of organic contaminants, photoreduction of CO2 into renewable fuels, toxic elimination of heavy metal ions, and antibacterial applications.  相似文献   

11.
Initial nanointerfacial electron transfer dynamics are studied in dye‐sensitized solar cells (DSSCs) in which the free energy and kinetics vary over a broad range. Surprisingly, it is found that the decay profiles, reflecting the electron transfer behavior, show a universal shape despite the different kinds of dye and semiconductor nanocrystalline films, even across different device types. This renews intuitive knowledge about the electron injection process in DSSCs. In order to quantitatively comprehend the universal behavior, a static inhomogeneous electronic coupling model with a Gaussian distribution of local injection energetics is proposed in which only the electron injection rate is a variant. It is confirmed that this model can be extended to CdSe quantum dot‐sensitized films. These unambiguous results indicate exactly the same physical distribution in electron injection process of different sensitization films, providing limited simple and important parameters describing the electron injection process including electronic coupling constant and reorganization energy. The results provide insight into photoconversion physics and the design of optimal metal‐free organic dye‐sensitized photovoltaic devices by molecular engineering.  相似文献   

12.
Graphdiyne, a novel large π‐conjugated carbon hole transporting material, is employed as anode buffer layer in colloidal quantum dots solar cells. Power conversion efficiency is notably enhanced to 10.64% from 9.49% compared to relevant reference devices. Hole transfer from the quantum dot solid active layer to the anode can be appreciably enhanced only by using graphdiyne to lower the work function of the colloidal quantum dot solid. It is found that the all‐carbon buffer layer prolongs the carrier lifetime, reducing surface recombination on the previously neglected back side of the photovoltaic device. Remarkably, the device also shows high long‐term stability in ambient air. The results demonstrate that graphdiyne may have diverse applications in enhancing optoelectronic devices.  相似文献   

13.
The use of scanning transmission electron microscopes to manipulate substitutional defects in graphene has recently been demonstrated and modeled using ground state molecular dynamics, but the role of electronic excitations induced through inelastic electron scattering in promoting these transformations has so‐far remained unexplored. Here, probed are the effects of electronic excitation on the structural dynamics of graphene quantum dots of differing edge morphologies that are substitutionally doped with silicon or phosphorous. The ground and excited state potential energy barriers for pyramidal inversion of these nonplanar doped species are evaluated using time‐dependent density functional theory. Optically bright excited states in which the barrier is decreased are identified in the low energy region of the electronic spectrum, suggesting that photoexcitation can modulate the reactivity of defects in graphene under electron beam irradiation. Coupling matrix elements between these inversion‐favoring excited states and the ground state and time‐domain simulations of the material's response to a point charge impulse indicate that focusing an electron beam near the defect can also lead to population of these states, suggesting that beam electrons incident on a defect can both excite the material to an inversion‐favoring state and transfer momentum to the defect to initiate the inversion.  相似文献   

14.
Novel and less toxic quantum dot (QD) semiconductors are desired for developing environmentally benign colloidal quantum dot solar cells. Here, the synthesis of novel lead/cadmium‐free neodymium chalcogenide Nd2(S, Se, Te)3 QDs via solution‐processed method is reported for the first time. The results show that small‐bandgap semiconductor QDs with a narrow size distribution ranging from 2 to 8 nm can be produced, and the wide absorption band can be achieved by the redshift owing to the size quantization effect by controlling the initial loading of chalcogenide precursors. By analyzing the band structure of QDs and the energy level alignment between QDs and TiO2, the influence of energy offset between the conduction band edges of QDs and TiO2 on the charge transfer dynamics and photovoltaic performance of QD solar cells (QDSCs) is investigated. It is revealed that among the three types of QDs studied, Nd2Se3 QDSCs with the smallest energy offset exhibit the best performances and a decent power conversion efficiency of 3.19% is achieved. This work clearly demonstrates the promising potentials of novel rare earth chalcogenide quantum dots in photovoltaic applications.  相似文献   

15.
The possibility of fabricating a composite system based on colloidal CdSe/ZnS quantum dots and GaAs nanowires is demonstrated and the structural and emission properties of this system are investigated by electron microscopy and photoluminescence spectroscopy techniques. The good wettability and developed surface of the nanowire array lead to an increase in the surface density of quantum dots and, as a consequence, in the luminosity of the system in the 600-nm wavelength region. The photoluminescence spectrum of the quantum dots exhibits good temperature stability in the entire range 10–295 K. The impact of surface states on energy relaxation and the role of exciton states in radiative recombination in the quantum dots are discussed.  相似文献   

16.
A possible mechanism of photoinduced annealing of intrinsic defects in quantum dots with a hexagonal crystal structure is justified on the basis of the studies of the kinetics of photoinduced decay of luminescence of CdSxSe1?x quantum dots synthesized in a glass matrix and ab initio calculations of chemical bond energies at the interface in the n(CdSe)-SiOx-type cluster. The model proposed implies that photoinduced Se-O bond breaking at the anionic face results in an increase in electric field inside the quantum dot; this field stimulates cadmium vacancy diffusion to the surface. This model accounts for the degradation of luminescence and of the parameters of nonlinear optical devices observed during photoinduced annealing.  相似文献   

17.
A simple, low‐temperature synthesis approach is reported for planting CdS‐sensitized 1D ZnO nanorod arrays on the 2D graphene (GR) sheet to obtain the ternary hierarchical nanostructures, during which graphene oxide (GO) as the precursor of GR acts as a flexible substrate for the formation of ZnO nanorod arrays. The hierarchical CdS‐1D ZnO‐2D GR hybrids can serve as an efficient visible‐light‐driven photocatalyst for selective organic transformations. The fast electron transport of 1D ZnO nanorods, the well‐known electronic conductivity of 2D GR, the intense visible‐light absorption of CdS, the unique hierarchical structure, and the matched energy levels of CdS, ZnO and GR efficiently boost the photogenerated charge carriers separation and transfer across the interfacial domain of hierarchical CdS‐1D ZnO‐2D GR hybrids under visible light irradiation via three‐level electron transfer process. Furthermore, the superior reusability of ternary hybrids is achieved by controlling the reaction parameters, i.e., using visible light irradiation and holes scavenger to prevent ZnO and CdS from photocorrosion. This work demonstrates a facile way of fabricating hierarchical CdS‐1D ZnO‐2D GR hybrids in a controlled manner and highlights a promising scope of adopting integrative photosensitization and co‐catalyst strategy to design more efficient semiconductor‐based composite photocatalysts toward solar energy capture and conversion.  相似文献   

18.
The research on transparent conductive electrodes is in rapid ascent in order to respond to the requests of novel optoelectronic devices. The synergic coupling of silver nanowires (AgNWs) and high‐quality solution‐processable exfoliated graphene (EG) enables an efficient transparent conductor with low‐surface roughness of 4.6 nm, low sheet resistance of 13.7 Ω sq?1 at high transmittance, and superior mechanical and chemical stabilities. The developed AgNWs–EG films are versatile for a wide variety of optoelectronics. As an example, when used as a bottom electrode in organic solar cell and polymer light‐emitting diode, the devices exhibit a power conversion efficiency of 6.6% and an external quantum efficiency of 4.4%, respectively, comparable to their commercial indium tin oxide counterparts.  相似文献   

19.
The discovery of novel materials that possess extraordinary optical properties are of special interest, as they inspire systems for next‐generation solar energy harvesting and conversion devices. Learning from nature has inspired the development of many photonic nanomaterials with fascinating structural colors. 2D photonic nanostructures, inspired by the attractive optical properties found on the inner surfaces of seashells, are fabricated in a facile and scalable way. The shells generate shining clusters for preying on phototactic creatures through interaction with incident solar light in water. By alternately depositing graphene and 2D ultrathin TiO2 nanosheets to form 2D–2D heterostructures and homostructures, seashell‐inspired nanomaterials with well‐controlled parameters are successfully achieved. They exhibit exceptional interlayer charge transfer properties and ultrafast in‐plane electron mobility and present fascinating nacre‐mimicking optical properties and significantly enhanced light‐response behavior when acting as photoelectrodes. A window into the fabrication of novel 2D photonic structures and devices is opened, paving the way for the design of high‐performance solar‐energy harvesting and conversion devices.  相似文献   

20.
Fabricating free‐standing, three‐dimensional (3D) ordered porous graphene structure can service a wide range of functional materials such as environmentally friendly materials for antibacterial medical applications and efficient solar harvesting devices. A scalable solution processable strategy is developed to create such free‐standing hierarchical porous structures composed of functionalized graphene sheets via an “on water spreading” method. The free‐standing film shows a large area uniform honeycomb structure and can be transferred onto any substrate of interest. The graphene‐based free‐standing honeycomb films exhibit superior broad spectrum antibacterial activity as confirmed using green fluorescent protein labeled Pseudomonas aeruginosa PAO1 and Escherichia coli as model pathogens. Functional nanoparticles such as titanium dioxide (TiO2) nanoparticles can be easily introduced into conductive graphene‐based scaffolds by premixing. The formed composite honeycomb film electrode shows a fast, stable, and completely reversible photocurrent response accompanying each switch‐on and switch‐off event. The graphene‐based honeycomb scaffold enhances the light‐harvesting efficiency and improves the photoelectric conversion behavior; the photocurrent of the composite film is about two times as high as that of the pure TiO2 film electrode. Such composite porous films combining remarkably good electrochemical performance of graphene, a large electrode/electrolyte contact area, and excellent stability during the photo‐conversion process hold promise for further applications in water treatment and solar energy conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号