首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of solar energy conversion materials is critical to the growth of a sustainable energy infrastructure in the coming years. A novel hybrid material based on single‐walled carbon nanotubes (SWNTs) and form‐stable polymer phase change materials (PCMs) is reported. The obtained materials have UV‐vis sunlight harvesting, light‐thermal conversion, thermal energy storage, and form‐stable effects. Judicious application of this efficient photothermal conversion to SWNTs has opened up a rich field of energy materials based on novel SWNT/PCM composits with enhanced performance in energy conversion and storage.  相似文献   

2.
The thermal conductivity of gas‐permeated single‐walled carbon nanotube (SWCNT) aerogel (8 kg m?3 density, 0.0061 volume fraction) is measured experimentally and modeled using mesoscale and atomistic simulations. Despite the high thermal conductivity of isolated SWCNTs, the thermal conductivity of the evacuated aerogel is 0.025 ± 0.010 W m?1 K?1 at a temperature of 300 K. This very low value is a result of the high porosity and the low interface thermal conductance at the tube–tube junctions (estimated as 12 pW K?1). Thermal conductivity measurements and analysis of the gas‐permeated aerogel (H2, He, Ne, N2, and Ar) show that gas molecules transport energy over length scales hundreds of times larger than the diameters of the pores in the aerogel. It is hypothesized that inefficient energy exchange between gas molecules and SWCNTs gives the permeating molecules a memory of their prior collisions. Low gas‐SWCNT accommodation coefficients predicted by molecular dynamics simulations support this hypothesis. Amplified energy transport length scales resulting from low gas accommodation are a general feature of CNT‐based nanoporous materials.  相似文献   

3.
4.
5.
Organic–inorganic lead halide perovskites have shown great future for application in solar cells owing to their exceptional optical and electronic properties. To achieve high‐performance perovskite solar cells, a perovskite light absorbing layer with large grains is desirable in order to minimize grain boundaries and recombination during the operation of the device. Herein, a simple yet efficient approach is developed to synthesize perovskite films consisting of monolithic‐like grains with micrometer size through in situ deposition of octadecylamine functionalized single‐walled carbon nanotubes (ODA‐SWCNTs) onto the surface of the perovskite layer. The ODA‐SWCNTs form a capping layer that controls the evaporation rate of organic solvents in the perovskite film during the postthermal treatment. This favorable morphology in turn dramatically enhances the short‐circuit current density of the perovskite solar cells and almost completely eliminates the hysteresis. A maximum power conversion efficiency of 16.1% is achieved with an ODA‐SWCNT incorporated planar solar cell using (FA0.83MA0.17)0.95Cs0.05Pb(I0.83Br0.17)3 as light absorber. Furthermore, the perovskite solar cells with ODA‐SWCNT demonstrate extraordinary stability with performance retention of 80% after 45 d stability testing under high humidity (60–90%) environment. This work opens up a new avenue for morphology manipulation of perovskite films and enhances the device stability using carbon material.  相似文献   

6.
A new type of light‐switchable “smart” single‐walled carbon nanotube (SWNTs) is developed by the reversible host–guest interaction between azobenzene‐terminal PEO (AzoPEO) and pyrene‐labeled host attached on the sidewalls of nanotubes via π–π stacking. The SWNTs hybrids not only are well dispersed in pure water, but also exhibit switchable dispersion/aggregation states upon the alternate irradiation of UV and visible light. Moreover, the SWNTs hybrids dispersion is preliminarily used as coating fluid to form transparent conductive films. The dispersant AzoPEO is removed by the contamination‐free UV treatment, decreasing the resistance of the films. This kind of light‐switchable SWNTs hybrids, possessing a ‘‘green’’ trigger and intact structure of the nanotube, may find potential applications in sensor of biomedicines, device fabrication, etc. Additionally, such a reversible host–guest interaction system may open up the possibility to control the dispersion state of SWNTs by other common polymers.  相似文献   

7.
The cover picture illustrates excited state dynamics of semiconducting single‐walled carbon nanotubes studied theoretically. Sergai Tretiak and Svetlana Kilina report on p. 3405 that absorption of the light quantum leads to spatially delocalized photoexcitation, which can be described as tightly bound excitons and characterized by 2D plots of transition density. The photoexcitation is coupled to the vibrational degrees of freedom, leading to complex exciton‐phonon dynamics, which can be monitored experimentally using ultrafast spectroscopic probes. We review quantum‐chemical studies of the excited‐state electronic structure of finite‐size semiconducting single‐walled carbon nanotubes (SWCNTs) using methodologies previously successfully applied to describe conjugated polymers and other organic molecular materials. The results of our simulations are in quantitative agreement with available spectroscopic data and show intricate details of excited‐state properties and photoinduced vibrational dynamics in carbon nanotubes. We analyze in detail the nature of strongly bound first and second excitons in SWCNTs for a number of different tubes, emphasizing emerging size‐scaling laws. Characteristic delocalization properties of excited states are identified by the underlying photoinduced changes in charge densities and bond orders. Due to the rigid structure, exciton–phonon coupling is much weaker in SWCNTs compared to typical molecular materials. Yet we find that, in the ground state, a SWCNT's surface experiences the corrugation associated with electron–phonon interactions. Vibrational relaxation following photoexcitation reduces this corrugation, leading to a local distortion of the tube surface, which is similar to the formation of self‐trapped excitons in conjugated polymers. The calculated associated Stokes shift increases with enlargement of the tube diameters. Such exciton vibrational phenomena are possible to detect experimentally, allowing for better understanding of photoinduced electronic dynamics in nanotube materials.  相似文献   

8.
9.
10.
11.
12.
Thermal energy storage technologies based on phase‐change materials (PCMs) have received tremendous attention in recent years. These materials are capable of reversibly storing large amounts of thermal energy during the isothermal phase transition and offer enormous potential in the development of state‐of‐the‐art renewable energy infrastructure. Thermal conductivity plays a vital role in regulating the thermal charging and discharging rate of PCMs and improving the heat‐utilization efficiency. The strategies for tuning the thermal conductivity of PCMs and their potential energy applications, such as thermal energy harvesting and storage, thermal management of batteries, thermal diodes, and other forms of energy utilization, are summarized systematically. Furthermore, a research perspective is given to highlight emerging research directions of engineering advanced functional PCMs for energy applications.  相似文献   

13.
14.
Traditional silicon solar cells extract holes and achieve interface passivation with the use of a boron dopant and dielectric thin films such as silicon oxide or hydrogenated amorphous silicon. Without these two key components, few technologies have realized power conversion efficiencies above 20%. Here, a carbon nanotube ink is spin coated directly onto a silicon wafer to serve simultaneously as a hole extraction layer, but also to passivate interfacial defects. This enables a low‐cost fabrication process that is absent of vacuum equipment and high‐temperatures. Power conversion efficiencies of 21.4% on an device area of 4.8 cm2 and 20% on an industrial size (245.71 cm2) wafer are obtained. Additionally, the high quality of this passivated carrier selective contact affords a fill factor of 82%, which is a record for silicon solar cells with dopant‐free contacts. The combination of low‐dimensional materials with an organic passivation is a new strategy to high performance photovoltaics.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号