首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 12 毫秒
1.
A practical methodology to design controllers for Takagi–Sugeno discrete‐time systems with unknown delays is proposed, based on using Linear Matrix Inequalities. More precisely, the design of discrete‐time output‐feedback stabilizing controllers in the presence of bounded delays is solved, when values of the disturbance attenuation and decay‐rate are imposed. A numerical example is provided to illustrate the proposed approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
3.
4.
This paper considers the problem of robust delay‐dependent L2L filtering for a class of Takagi–Sugeno fuzzy systems with time‐varying delays. The purpose is to design a fuzzy filter such that both the robust stability and a prescribed L2L performance level of the filtering error system are guaranteed. A delay‐dependent sufficient condition for the solvability of the problem is obtained and a linear matrix inequality (LMI) approach is developed. A desired filter can be constructed by solving a set of LMIs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the mixed ???/?? fault detection observer design issue for a class of linear parameter‐varying (LPV) systems. Analogous to the definition of the quadratic ?? performance for LPV systems and the ??? index for linear time invariant (LTI) systems, the quadratic ??? index and the affine quadratic ??? index for LPV systems are defined in terms of linear matrix inequalities (LMIs). The first algorithm for designing the mixed ???/H observer is proposed, which aims at minimizing the quadratic ?? performance and maximizing the quadratic ??? index of the observer error dynamic systems. To reduce the conservativeness of this algorithm, the affine quadratic ?? performance and the affine ??? index for LPV systems are utilized. The robustness conditions and affine ??? index conditions for the underlying observer optimization issue are formulated as parameter‐dependent LMIs. The Gridding technique and multi‐convexity concept are applied, respectively, for reducing the parameter‐dependent LMIs to finite LMI constraints. Correspondingly, two iterative algorithms are proposed. Furthermore, the threshold design and the estimation of the worst undetectable fault size are investigated. An example is studied to demonstrate the effectiveness of the proposed algorithms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is devoted to designing iterative learning control (ILC) for multiple‐input multiple‐output discrete‐time systems that are subject to random disturbances varying from iteration to iteration. Using the super‐vector approach to ILC, statistical expressions are presented for both expectation and variance of the tracking error, and time‐domain conditions are developed to ensure their asymptotic stability and monotonic convergence. It shows that time‐domain conditions can be tied together with an H‐based condition in the frequency domain by considering the properties of block Toeplitz matrices. This makes it possible to apply the linear matrix inequality technique to describe the convergence conditions and to obtain formulas for the control law design. Furthermore, the H‐based approach is shown applicable to ILC design regardless of the system relative degree, which can also be used to address issues of model uncertainty. For a class of systems with a relative degree of one, simulation tests are provided to illustrate the effectiveness of the H‐based approach to robust ILC design. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is devoted to the problem of robust H filtering for a class of uncertain switched neutral systems subject to stochastic disturbance and time‐varying delay. Attention is focused on the design of a full‐order switched filter such that the filtering error system is robust mean‐square exponentially stable with a prescribed weighted H performance. On the basis of the average dwell time approach and the piecewise Lyapunov function technique, sufficient conditions for the solvability of this problem are obtained in terms of linear matrix inequalities. Then, by solving the corresponding linear matrix inequalities, the desired full‐order switched filter is derived for all admissible uncertainties, time‐varying delay, and stochastic disturbances. A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号