首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The emergence of cesium lead iodide (CsPbI3) perovskite solar cells (PSCs) has generated enormous interest in the photovoltaic research community. However, in general they exhibit low power conversion efficiencies (PCEs) because of the existence of defects. A new all‐inorganic perovskite material, CsPbI3:Br:InI3, is prepared by defect engineering of CsPbI3. This new perovskite retains the same bandgap as CsPbI3, while the intrinsic defect concentration is largely suppressed. Moreover, it can be prepared in an extremely high humidity atmosphere and thus a glovebox is not required. By completely eliminating the labile and expensive components in traditional PSCs, the all‐inorganic PSCs based on CsPbI3:Br:InI3 and carbon electrode exhibit PCE and open‐circuit voltage as high as 12.04% and 1.20 V, respectively. More importantly, they demonstrate excellent stability in air for more than two months, while those based on CsPbI3 can survive only a few days in air. The progress reported represents a major leap for all‐inorganic PSCs and paves the way for their further exploration in order to achieve higher performance.  相似文献   

12.
13.
Two novel wide‐bandgap copolymers, PBDT‐TDZ and PBDTS‐TDZ, are developed based on 1,3,4‐thiadiazole (TDZ) and benzo[1,2‐b:4,5‐b′]dithiophene (BDT) building blocks. These copolymers exhibit wide bandgaps over 2.07 eV and low‐lying highest occupied molecular orbital (HOMO) levels below −5.35 eV, which match well with the typical low‐bandgap acceptor of ITIC, resulting in a good complementary absorption from 300 to 900 nm and a low HOMO level offset (≤0.13 eV). Compared to PBDT‐TDZ, PBDTS‐TDZ with alkylthio side chains exhibits the stronger optical absorption, lower‐lying HOMO level, and higher crystallinity. By using a single green solvent of o‐xylene, PBDTS‐TDZ:ITIC devices exhibit a large open‐circuit voltage (Voc) up to 1.10 eV and an extremely low energy loss (Eloss) of 0.48 eV. At the same time, the desirable high short‐circuit current density (Jsc) of 17.78 mA cm−2 and fill factor of 65.4% are also obtained, giving rise to a high power conversion efficiency (PCE) of 12.80% without any additive and post‐treatment. When adopting a homotandem device architecture, the PCE is further improved to 13.35% (certified as 13.19%) with a much larger Voc of 2.13 V, which is the best value for any type of homotandem organic solar cells reported so far.  相似文献   

14.
15.
16.
All‐solution‐processing at low temperatures is important and desirable for making printed photovoltaic devices and also offers the possibility of a safe and cost‐effective fabrication environment for the devices. Herein, an all‐solution‐processed flexible organic solar cell (OSC) using poly(3,4‐ethylenedioxythiophene):poly‐(styrenesulfonate) electrodes is reported. The all‐solution‐processed flexible devices yield the highest power conversion efficiency of 10.12% with high fill factor of over 70%, which is the highest value for metal‐oxide‐free flexible OSCs reported so far. The enhanced performance is attributed to the newly developed gentle acid treatment at room temperature that enables a high‐performance PEDOT:PSS/plastic underlying substrate with a matched work function (≈4.91 eV), and the interface engineering that endows the devices with better interface contacts and improved hole mobility. Furthermore, the flexible devices exhibit an excellent mechanical flexibility, as indicated by a high retention (≈94%) of the initial efficiency after 1000 bending cycles. This work provides a simple route to fabricate high‐performance all‐solution‐processed flexible OSCs, which is important for the development of printing, blading, and roll‐to‐roll technologies.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号