首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present a new inter‐carrier interference (ICI) self‐cancellation scheme — namely, ISC scheme — for orthogonal frequency‐division multiplexing systems to reduce the ICI generated from phase noise (PHN) and residual frequency offset (RFO). The proposed scheme comprises a new ICI cancellation mapping (ICM) scheme at the transmitter and an appropriate method of combining the received signals at the receiver. In the proposed scheme, the transmitted signal is transformed into a real signal through the new ICM using the real property of the transmitted signal; the fast‐varying PHN and RFO are estimated and compensated. Therefore, the ICI caused by fast‐varying PHN and RFO is significantly suppressed. We also derive the carrier‐to‐interference power ratio (CIR) of the proposed scheme by using the symmetric conjugate property of the ICI weighting function and then compare it with those of conventional schemes. Through simulation results, we show that the proposed ISC scheme has a higher CIR and better bit error rate performance than the conventional schemes.  相似文献   

2.
In this paper, we address the ICI (intercarrier interference) problem and compensation in MIMO (multiple input multiple output) SC‐FDMA (single carrier frequency division multiple access) system that exploits SC‐SFBC (single carrier‐space frequency block coding) scheme. Recently, SC‐FDMA technique has received more attention due to the low PAPR (peak to average power ratio) property. However, SC‐FDMA system is sensitive to phase noise and CFO (carrier frequency offset) which is unavoidable in wireless communication systems. Phase noise and CFO introduce CPE (common phase error) as well as ICI into the received signal and seriously degrade the system performance. Therefore, analysis and suppression of these interferences are of great importance. In this paper, we analyze the interferences in MIMO SC‐FDMA system with SC‐SFBC. Then a new ICI estimation and suppression method is proposed to suppress the interferences. Instead of directly estimating the CFO and phase noise, which is pretty difficult and complex, this algorithm exploits block‐type pilots, which is a common pilot pattern in wireless communication systems, such as LTE standard, to estimate the interferences. After that the interferences are suppressed by the inverse matrix method. Simulation results show that the system performance is significantly improved. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The use of orthogonal frequency division multiplexing (OFDM) in frequency‐selective fading environments has been well explored. However, OFDM is more prone to time‐selective fading compared with single‐carrier systems. Rapid time variations destroy the subcarrier orthogonality and introduce inter‐carrier interference (ICI). Besides this, obtaining reliable channel estimates for receiver equalization is a non‐trivial task in rapidly fading systems. Our work addresses the problem of channel estimation and ICI suppression by viewing the system as a state‐space model. The Kalman filter is employed to estimate the channel; this is followed by a time‐domain ICI mitigation filter that maximizes the signal‐to‐interference plus noise ratio (SINR) at the receiver. This method is seen to provide good estimation performance apart from significant SINR gain with low training overhead. Suitable bounds on the performance of the system are described; bit error rate (BER) performance over a time‐invariant Rayleigh fading channel serves as the lower bound, whereas BER performance over a doubly selective system with ICI as the dominant impairment provides the upper bound. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Offset quadrature amplitude modulation‐based orthogonal frequency division multiplexing (OFDM) systems cannot be directly combined with the Alamouti code because of the intrinsic imaginary interference. In this paper, we propose a block‐wise space‐frequency block coding (SFBC) scheme and a block‐wise space‐time block coding (STBC) scheme for offset quadrature amplitude modulation‐based OFDM systems, which achieve bit error rate performances that are close to OFDM systems. The proposed schemes satisfy the orthogonality condition of the Alamouti code in the complex field with guard band/intervals. To improve the spectral efficiency of the block‐wise SFBC scheme, we also consider the case without the guard band. It is observed that only the two innermost subcarriers do not satisfy the complex orthogonality condition when the guard band is removed. Then, a simple equalization scheme is proposed to independently equalize the two innermost subcarriers. Simulation results show that the block‐wise SFBC scheme works well under channels with mild‐to‐moderate frequency selectivity, and the block‐wise (STBC ) scheme suffers less than 1 dB loss under severe frequency selective channels at the bit error rate of 10 − 3, when only a simple one tap zero‐forcing equalizer is employed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Single‐carrier frequency division multiple access (SC‐FDMA) systems with space frequency block coding (SFBC) transmissions achieve both spatial and frequency diversity gains in wireless communications. However, SFBC SC‐FDMA schemes using linear detectors suffer from severe performance deterioration because of noise enhancement propagation and additive noise presence in the detected output. Both issues are similar to inter‐symbol‐interference (ISI). Traditionally, SC‐FDMA system decision feedback equalizer (DFE) is often used to eliminate ISI caused by multipath propagation. This article proposes frequency domain turbo equalization based on nonlinear multiuser detection for uplink SFBC SC‐FDMA transmission systems. The presented iterative receiver performs equalization with soft decisions feedback for ISI mitigation. Its coefficients are derived using minimum mean squared error criteria. The receiver configuration study is Alamouti's SFBC with two transmit and two receive antennas. New receiver approach is compared with the recently proposed suboptimal linear detector for SFBC SC‐FDMA systems. Simulation results confirm that the performance of the proposed iterative detection outperforms conventional detection techniques. After a few iterations, bit‐error‐rate performance of the proposed receiver design is closely to the matched filter bound. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Multi‐input multi‐output orthogonal frequency‐division multiplexing (MIMO‐OFDM) has been actively studied for high data rate communications over the bandwidth‐limited underwater acoustic (UWA) channels. Unlike existing receivers that treat the intercarrier interference (ICI) as additive noise, in this paper, the proposed receiver considers ICI explicitly together with the co‐channel interference (CCI) due to parallel transmissions in MIMO‐OFDM. Using a recently developed progressive receiver framework, the proposed receiver starts with low‐complexity ICI‐ignorant processing and then progresses to ICI‐aware processing with increasing ICI levels. The key components of the proposed receiver include the following: (1) compressed sensing‐based sparse channel estimation, (2) soft‐input soft‐output minimum mean square error/Markov chain Monte Carlo detector for interference mitigation, and (3) soft nonbinary low‐density parity check decoding. In addition to simulation, we use real data from the Surface Processes and Acoustic Communications Experiment 2008 (SPACE08) and the Mobile Acoustic Communications Experiment 2010 (MACE10) to verify the system performance, where the transmitter in SPACE08 was stationary and that in MACE10 was slowly moving. Simulation and experimental results show that explicitly addressing ICI and CCI significantly improves the performance of MIMO‐OFDM in UWA systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Orthogonal frequency division multiplexing (OFDM) has been widely used for its robustness against multipath fading and low-complexity implementation. However, OFDM system, especially with large number of subcarriers and high modulation order, is severely affected by the phase noise of oscillators and carrier frequency offset (CFO). On the other hand, self-cancellation schemes have received a lot of attention due to their simple implementation and high efficiency to suppress inter-carrier interference (ICI) in OFDM systems. Among those ICI self-cancellation methods, symmetric conjugate symbol repetition (SCSR) has been proven to have the best bit error ratio (BER) performance for phase noise suppression. In this paper, the performance of OFDM systems with SCSR ICI self-cancellation in the presence of both phase noise (PHN) and CFO are investigated, and analytical expressions are derived to calculate error probability evaluated by symbol error ratio (SER) over additive white Gaussian noise (AWGN) and Rayleigh flat fading channels. An approach of second order approximation of PHN/CFO has been performed to estimate the residual ICI, which could provide more accurate results. Simulation results show perfect agreement with those obtained by theoretical analysis, which could be used to estimate OFDM system error probability, facilitating the design of the overall system.  相似文献   

8.
Future broadband wireless communication systems demand high quality of service (QoS) for anytime anywhere multimedia applications. The standards which use orthogonal frequency division multiplexing (OFDM) coupled with multi input multi output (MIMO) are expected to rule the future wireless world. Time selective nature of the channel introduces inter carrier interference (ICI), which is the major performance limiting parameter in OFDM based systems. ICI causes loss in spectral efficiency and results in poor bit error rate (BER) performance, affecting the QoS of MIMO-OFDM systems. The conventional single input single output (SISO)-OFDM-flexible subcarrier spacing (FSS) system offers better performance than the fixed subcarrier spacing systems in terms of ICI mitigation. But BER and spectral efficiency performance of SISO-OFDM-FSS is not good enough to satisfy the requirements of future wireless broadband services. To improve the BER performance, SISO-OFDM system is replaced by space frequency block coded (SFBC)-OFDM system, which adds spatial and frequency diversity benefits to the conventional system. More number of antennas in the MIMO scheme increases the hardware cost, computational complexity and percentage of overhead. In the present study, to improve the spectral efficiency and to reduce the complexity and cost, optimal transmit antenna selection (OTAS) is combined with the SFBC-OFDM-FSS scheme. The simulation results prove that the proposed SFBC-OFDM-FSS-OTAS scheme offers better QoS than the conventional SISO-OFDM-FSS scheme.  相似文献   

9.
It is well known that orthogonal frequency division multiplexing (OFDM) is sensitive to carrier frequency offset (CFO) and suffers from a high peak‐to‐average ratio. In addition, the performance of OFDM is severely affected by strong co‐channel interference and strong narrowband interference. To mitigate the limitations of OFDM, we propose a new multi‐carrier transceiver based on frequency‐shift filter. A frequency‐shift filter can separate spectrally overlapping sub‐carrier signals by exploiting the spectral correlation inherent in the cyclostationary modulated signals. To increase spectral efficiency, we increase the percentage of spectral overlap between two adjacent sub‐channels. We derive an upper bound and a lower bound on the bit error rate performance of the proposed multi‐carrier transceiver in additive white Gaussian noise channel and frequency‐nonselective Rayleigh fading channel, respectively. Compared with OFDM, our simulation results show that the proposed multi‐carrier transceiver is much less sensitive to CFO and has a lower peak‐to‐average ratio; moreover, without any additional interference suppression technique, the proposed transceiver has the advantage of being able to mitigate strong co‐channel interference with CFO from the intended multi‐carrier signal and mitigate strong narrowband interference in additive white Gaussian noise channel and in Rayleigh fading channel in which a large CFO between the transmitted signal and the received signal often occurs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
For mobile orthogonal frequency division multiplexing (OFDM) systems, time‐varying channels and random phase noise introduced by the oscillator result in severe intercarrier interference (ICI), respectively, and degrade the overall OFDM system performance. However, the existing ICI reduction methods only aim at a single interference source, i.e. either time‐varying channels or phase noise. Therefore, these methods are not suitable for the actual situation. In this paper, we analyze the spectral property of the transfer function composed of time‐varying channels and phase noise, and propose that the transfer function can be approximated by a finite parameter complex exponential basis expansion model (CE‐BEM). Then, a pilot‐aided minimum mean square error estimation is adopted to estimate the CE‐BEM coefficients in order to reconstruct the transfer function and reduce ICI. Finally, our simulation results show how the proposed scheme would improve the system performance in a time‐varying environment with phase noise. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The aim of the paper is to study the problems of resource management in the presence of inter-carrier interference (ICI) and multipath fading channel for orthogonal frequency division multiplexing (OFDM) systems. OFDM is a promising technique for the broadband wireless communication systems. However, the OFDM communication system is sensitive to ICI which arises because of Doppler spread and carrier frequency offset (CFO). To solve these problems, an optimization method has been exploited, and a computationally efficient method using numerical optimization techniques is proposed. The simulation results show that these derived optimal solutions and proposed suboptimal algorithms as compared with the uniform power allocation algorithm or conventional water-filling algorithm can significantly improve the performance of the OFDM systems.  相似文献   

12.
This paper describes an ICI mitigation method based on the generalized data‐allocation of (1, ?β) for orthogonal frequency division multiplexing systems. To improve the performance of the ICI mitigation for the higher‐frequency offset, we propose an efficient search algorithm to generate the sub‐optimal parameter β for maximizing the carrier‐to‐interference ratio (CIR). The CIR and bit error rate performances of the proposed method were derived in this paper. The performances with different carrier frequency offset scenarios were evaluated by computer simulations. According to the simulation results, the performance of the proposed ICI mitigation scheme is better than that of the conventional ICI self‐cancellation scheme and is nearly the same as that of the ICI self‐cancellation scheme for the optimal parameter β. Additionally, the proposed ICI mitigation scheme has a dramatically reduced hardware complexity in comparison with the ICI self‐cancellation scheme for the optimal parameter β. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
OFDM has been applied in a wide variety of wireless communications in recent years since it has the advantage over the conventional single-carrier modulation schemes when enduring the frequency-selective fading. However, intercarrier-interference (ICI) and interblock interference (IBI) due to the Doppler effect, carrier frequency drift of local oscillators and multipath fading limit the capability of OFDM systems. In this paper, a new generalized mathematical model for intercarrier and interblock interferences is derived for wireless mobile OFDM systems, in which Doppler frequency drift, local carrier frequency offset, multipath fading, and cyclic prefix coding are all present in reality. Such a new ICI/IBI model can be applied for OFDM performance evaluation in different environments. This new formulation of IBI and ICI provides a generalized framework which includes special ICI models appearing in the previous literature. Besides, the derived OFDM performance evaluation analysis in this paper can greatly benefit OFDM designers for wireless multimedia networks and digital video broadcasting technologies.  相似文献   

14.
OFDM‐based cognitive radio systems are spectrally flexible and efficient, but they are vulnerable to intercarrier interference (ICI), especially in high mobility environments. High mobility of the terminal causes large Doppler frequency spread resulting in serious ICI. Such ICI severely degrades the system performance, which is ignored in the existing resource allocation of OFDM‐based cognitive radio systems. In this paper, an adaptive subcarrier bandwidth along with power allocation problem in OFDM‐based cognitive radio systems for high mobility applications is investigated. This adaptive subcarrier bandwidth method should choose the suitable subcarrier bandwidth not only to balance the tradeoff between ICI and intersymbol interference but also to be large enough to tolerate an amount of Doppler frequency spread but less than the coherence bandwidth. The power budget and interference to primary users caused by cognitive radio users are imposed for primary users' protection. With these constraints, a joint optimization algorithm of subcarrier bandwidth and power allocation is proposed to maximize the bandwidth efficiency of OFDM‐based cognitive radio systems in such conditions. Numerical simulation results show that the proposed algorithm could maximize the system bandwidth efficiency and balance this tradeoff while satisfying the constraints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
We propose a novel intercarrier interference (ICI) self‐cancellation scheme for orthogonal frequency division multiplexing (OFDM) systems. The symmetric scheme is the best among all ICI self‐cancellation scheme in the literature. Its coefficient pair is (1, ? 1), and the loading subcarriers are the kth and N?k ? 1th subcarriers, where N is the number of subcarriers. We propose to modify the symmetric scheme and change the coefficient pair from (1, ? 1) to (1, ?µ) where µis between 0 and 1. The proposed modified symmetric scheme has better carrier‐to‐interference‐ratio (CIR) than all previous ICI self‐cancellation schemes by at least 1.7 dB when the normalized frequency offset is 0.5. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In orthogonal frequency division multiplexing (OFDM) system, phase noise (PHN) from oscillator can severely reduce the performance by causing: common phase error (CPE) and inter-carrier interference (ICI). The impact of PHN on received signal can be characterized by the circular convolution of the transmitted signal and the discrete Fourier transform (DFT) of PHN signal in frequency domain. Digital television/terrestrial multimedia broadcasting (DTMB), announced as the Chinese digital television terrestrial broadcasting (DTTB) standard, adopted the time-domain synchronous OFDM system (TDS-OFDM) system which has 36 continuous transmission parameter signaling (TPS) symbols in frequency domain which be used for PHN suppression. Based on a linearized parametric model for PHN, least squared (LS) estimation and fast Fourier transform (FFT) approaching method for PHN correction are proposed in this paper. The effects of the PHN on channel estimation in both TDS-OFDM system and conventional cyclic prefix OFDM (CP-OFDM) are also investigated. Simulations show that the proposed algorithm can effectively reduce the PHN and improve the symbol error rata (SER) of TDS-OFDM systems over both additive white Gaussian noise (AWGN) and broadcasting multipath channel. In practice, the FFT-approaching method can be applied to the DTMB receiver-chip design directly with low implementation cost.   相似文献   

17.
With wireless communications in high‐mobility environment becoming popular, this poses a big challenge for communication systems based on the comb‐pilot OFDM, such as IEEE 802.11p, since it has not the enough pilots to estimate the time‐ and frequency‐selective channel accurately. In this paper, several comb‐pilot schemes and three comb‐pilot design rules are proposed to meet the Nyquist criterion for sampling the vehicle‐to‐vehicle (V2V) channel and the requirements of second‐order statistic of V2V channel. Based on the proposed pilot schemes, an iterative channel estimation method from the CE‐BEM model is proposed, together with three ICI cancellation methods. After thorough simulation, the effectiveness of the comb‐pilot design rules, the proposed channel estimation method, and intercarrier interference (ICI) cancellation methods is verified. Compared with other channel estimation methods, the proposed method performs better. The simulation results also reveal that the channel order L+1 has a great impact on the performance of the comb‐pilot OFDM system.  相似文献   

18.
熊兴中  骆忠强  郝黎宏 《电讯技术》2012,52(10):1602-1607
针对OFDM IDMA系统中载波频偏(CFO)带来的子载波之间的干扰问题,提出了在各用户具有相同频偏下的联合逐码片(构的信号作为虚拟的训练序列进行频域频偏估计,同时进行相应的时域频偏补偿.理论分析及实验仿真结果表明:基于逐码片迭代检测的近无频偏时的性能CBC)迭代检测的载波同步方法.该方法利用迭代检测中的外信息重OFDM IDMA系统的频偏估计和补偿方法能够使系统性能接  相似文献   

19.
Phase noise in orthogonal frequency division multiplexing (OFDM) systems destroys the orthogonality of the subcarriers and inter-carrier interference (ICI) is caused. In this paper, the ICI self-cancellation scheme is adopted to combat the ICI caused by phase noise in OFDM systems. Moreover, the error coefficients are defined and the theoretical expressions of carrier to interference ratio (C/I) with and without the ICI self-cancellation scheme are separately derived. From the simulation results, it is verified that the ICI self-cancellation scheme obviously decreases the amount of the ICI caused by phase noise and the improvement of C/I could reach 10 dB when the normalized 3 dB bandwidth of phase noise is 0.4. However, the convolutional coding OFDM (COFDM) system could supply more performance gain at the expense of increasing decoder complexity compared to OFDM system with the ICI self-cancellation scheme in the frequency-selective channel.  相似文献   

20.
In this paper, we consider the narrowband interference problem for orthogonal frequency division multiplexing (OFDM)‐based cognitive radio (CR) systems, in which parts of the OFDM subcarriers and parts of the data frame can be seriously interfered, resulting in significant performance degradation. We propose a scheme of iterative noise plus interference estimation and decoding (IED) to mitigate the performance degradation caused by the narrowband interference, which is based on expectation maximization (EM) algorithm. To reduce the number of OFDM symbols for time domain averaging required in the proposed scheme, and adapt the proposed scheme to rapid changing narrowband interference conditions, we also propose an IED scheme with frequency domain partial averaging (IED‐FPA). Moreover, we derive the Cramér‐Rao lower bounds for unbiased noise plus interference variance estimations, and they can be achieved via the proposed IED schemes. Simulation results show that the proposed IED‐FPA scheme can effectively achieve the same performance as that of the optimal maximum likelihood decoder with full knowledge of the power plus interference variances, and the proposed IED‐FPA scheme is very robust with respect to the number of the interfered subcarriers and positive errors of the knowledge of the interfered subcarriers' number. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号