首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initial nanointerfacial electron transfer dynamics are studied in dye‐sensitized solar cells (DSSCs) in which the free energy and kinetics vary over a broad range. Surprisingly, it is found that the decay profiles, reflecting the electron transfer behavior, show a universal shape despite the different kinds of dye and semiconductor nanocrystalline films, even across different device types. This renews intuitive knowledge about the electron injection process in DSSCs. In order to quantitatively comprehend the universal behavior, a static inhomogeneous electronic coupling model with a Gaussian distribution of local injection energetics is proposed in which only the electron injection rate is a variant. It is confirmed that this model can be extended to CdSe quantum dot‐sensitized films. These unambiguous results indicate exactly the same physical distribution in electron injection process of different sensitization films, providing limited simple and important parameters describing the electron injection process including electronic coupling constant and reorganization energy. The results provide insight into photoconversion physics and the design of optimal metal‐free organic dye‐sensitized photovoltaic devices by molecular engineering.  相似文献   

2.
Electron recombination is one of the major loss factors in dye‐sensitized solar cells (DSC), especially, with single electron outer sphere redox shuttle electrolyte. Insulating sub‐nanometer oxide tunneling layers deposited by atomic layer deposition (ALD) are known to block the electron recombination, thereby leading to an increase in the open‐circuit potential and the collection efficiency of the solar cell. A general perception in the DSC community is that any insulating oxide layer can block the recombination. However, in this work, it is unraveled that the insulating property of oxides alone is not sufficient. In addition, the properties such as the conduction band position and the oxidation state of the insulating oxide, the electronic structural modification induced to the underlying TiO2 mesoporous film, modification of surface charges (isoelectric point) and charge of the electrolyte species have to be considered. A complete photovoltaic study is done by depositing different cycles (by ALD) of four different insulating oxides (Ga2O3, ZrO2, Nb2O5, and Ta2O5) and their recombination characteristics, surface electronic properties, transport rate, and injection dynamics are investigated with a standard organic dye and Co2+/Co3+ redox mediator. A comparison is made with the conventional iodide/triiodide electrolyte.  相似文献   

3.
TiO2/NaYF4:Yb3+,Er3+ nano‐heterostructures are prepared in situ on the TiO2 photoanode of dye‐sensitized solar cells (DSCs). Transmission electron microscopy (TEM) and high‐resolution (HR)‐TEM confirm the formation of TiO2/NaYF4:Yb3+,Er3+ nano‐heterostructures. The up‐converted fluorescence spectrum of the photoanode containing the nano‐heterostructure confirms electron injection from NaYF4:Yb3+,Er3+ to the condution band (CB) of TiO2. When using a photoanode containing the nano‐heterostructure in a DSC, the overall efficiency (η) of the device is 17% higher than that of a device without the up‐conversion nanoparticles (UCNPs) and 13% higher than that of a device containing mixed TiO2 and UCNPs. Nano‐heterostructures of TiO2/NaYF4:Yb3+,Tm3+ and TiO2/NaYF4:Yb3+,Ho3+ can also be prepared in situ on TiO2 photoanodes. The overall efficiency of the device containing TiO2/NaYF4:Yb3+,Ho3+ nano‐heterostructures is 15% higher than the control device without UCNPs. When nano‐heterostructures of TiO2/NaYF4:Yb3+,Tm3+ are used, the open‐circuit voltage (Voc) and the short‐circuit current density (Jsc) are all slightly decreased. The effect of the different UCNPs results from the different energy levels of Er3+, Tm3+, and Ho3+. These results demonstrate that utilizing the UCNPs with the apporpriate energy levels can lead to effective electron injection from the UCNPs to the CB of TiO2, effectively improving the photocurrent and overall efficiency of DSCs while using NIR light.  相似文献   

4.
Developing highly effective and stable counter electrode (CE) materials to replace rare and expensive noble metals for dye‐sensitized and perovskite solar cells (DSC and PSC) is a research hotspot. Carbon materials are identified as the most qualified noble metal‐free CEs for the commercialization of the two photovoltaic devices due to their merits of low cost, excellent activity, and superior stability. Herein, carbonaceous CE materials are reviewed extensively with respect to the two devices. For DSC, a classified discussion according to the morphology is presented because electrode properties are closely related to the specific porosity or nanostructure of carbon materials. The pivotal factors influencing the catalytic behavior of carbon CEs are also discussed. For PSC, an overview of the new carbon CE materials is addressed comprehensively. Moreover, the modification techniques to improve the interfacial contact between the perovskite and carbon layers, aiming to enhance the photovoltaic performance, are also demonstrated. Finally, the development directions, main challenges, and coping approaches with respect to the carbon CE in DSC and PSC are stated.  相似文献   

5.
Ru(4,4‐dicarboxylic acid‐2,2′‐bipyridine) (4,4′‐bis(2‐(4‐(1,4,7,10‐tetraoxyundecyl)phenyl)ethenyl)‐2,2′‐bipyridine) (NCS)2, a new high molar extinction coefficient ion‐coordinating ruthenium sensitizer was synthesized and characterized using 1H NMR, Fourier transform IR (FTIR), and UV/vis spectroscopies and cyclic voltammetry. Using this sensitizer in combination with a nonvolatile organic‐solvent‐based electrolyte, we obtain a photovoltaic efficiency of 8.4 % under standard global AM 1.5 sunlight. These devices exhibit excellent stability when subjected to continuous thermal stress at 80 °C or light soaking at 60 °C for 1000 h. An electrochemical impedance spectroscopy study revealed that device stability is maintained by stabilizing the TiO2/dye/electrolyte and Pt/electrolyte interface during the aging process. The influence of Li+ present in the electrolyte on the device photovoltaic parameters was studied, and the FTIR spectral and photovoltage transient study showed that Li+ coordinates to the triethyleneoxide methylether side chains on the K60 sensitizer molecules.  相似文献   

6.
This article presents a critical discussion of the various physical processes occurring in organic bulk heterojunction (BHJ) solar cells based on recent experimental results. The investigations span from photoexcitation to charge separation, recombination, and sweep‐out to the electrodes. Exciton formation and relaxation in poly[N‐9″‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole) (PCDTBT) and poly‐3(hexylthiophene) (P3HT) are discussed based on a fluorescence up‐conversion study. The commonly accepted paradigm describing the conversion of incident photons into charge carriers in the BHJ material is re‐examined in light of these femtosecond time‐resolved measurements. Transient photoconductivity, time‐delayed collection field, and time‐delayed dual pulse experiments carried out on BHJ solar cells demonstrate the competition between carrier sweep‐out by the internal field and the loss of photogenerated carriers by recombination. Finally, an emerging hypothesis is discussed: that bimolecular recombination accounts for the majority of recombination from short circuit to open circuit in optimized solar cells, and that bimolecular recombination is bias‐ and charge‐density‐dependent. The study of recombination loss processes in organic solar cells leads to insights into what must be accomplished to achieve the “ideal” solar cell.  相似文献   

7.
Dye‐sensitized solar cells (DSSC) are a realistic option for converting light to electrical energy. Hybrid architectures offer a vast materials library for device optimization, including a variety of metal oxides, organic and inorganic sensitizers, molecular, polymeric and electrolytic hole‐transporter materials. In order to further improve the efficiency of solid‐state dye‐sensitized solar cells, recent attention has focused on using light absorbing polymers such as poly(3‐hexylthiophene) (P3HT), to replace the more commonly used “transparent” 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)9,9′spiro‐bifluorene (spiro‐OMeTAD), in order to enhance the light absorption within thin films. As is the case with spiro‐OMeTAD based solid‐state DSSC, the P3HT‐based devices improve significantly with the addition of lithium bis(trifluoromethylsulfonyl)imide salts (Li‐TFSI), although the precise role of these additives has not yet been clarified in solid‐state DSCs. Here, we present a thorough study on the effect of Li‐TFSI in P3HT based solid‐state DSSC incorporating an indolene‐based organic sensitizer termed D102. Employing ultrafast transient absorption and cw‐emission spectroscopy together with electronic measurements, we demonstrate a fine tuning of the energetic landscape of the active cell components by the local Coulomb field induced by the ions. This increases the charge transfer nature of the excited state on the dye, significantly accelerating electron injection into the TiO2. We demonstrate that this ionic influence on the excited state energy is the primary reason for enhanced charge generation with the addition of ionic additives. The deepening of the relative position of the TiO2 conduction band, which has previously been thought to be the cause for enhanced charge generation in dye sensitized solar cells with the addition of lithium salts, appears to be of minor importance in this system.  相似文献   

8.
A novel heteroleptic RuII complex (BTC‐2) employing 5,5′‐(2,2′‐bipyridine‐4,4′‐diyl)‐bis(thiophene‐2‐carboxylic acid) (BTC) as the anchoring group and 4,4′‐ dinonyl‐2,2′‐bipiridyl and two thiocyanates as ligands is prepared. The photovoltaic performance and device stability achieved with this sensitizer are compared to those of the Z‐907 dye, which lacks the thiophene moieties. For thin mesoporous TiO2 films, the devices with BTC‐2 achieve higher power conversion efficiencies than those of Z‐907 but with a double‐layer thicker film the device performance is similar. Using a volatile electrolyte and a double layer 7 + 5 μm mesoporous TiO2 film, BTC‐2 achieves a solar‐to‐electricity conversion efficiency of 9.1% under standard global AM 1.5 sunlight. Using this sensitizer in combination with a low volatile electrolyte, a photovoltaic efficiency of 8.3% is obtained under standard global AM 1.5 sunlight. These devices show excellent stability when subjected to light soaking at 60 °C for 1000 h. Electrochemical impedance spectroscopy and transient photovoltage decay measurements are performed to help understand the changes in the photovoltaic parameters during the aging process. In solid state dye‐sensitized solar cells (DSSCs) using an organic hole‐transporting material (spiro‐MeOTAD, 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene), the BTC‐2 sensitizer exhibits an overall power conversion efficiency of 3.6% under AM 1.5 solar (100 mW cm?2) irradiation.  相似文献   

9.
Compact inverse‐opal structures are constructed using non‐aggregated TiO2 nanoparticles in a three‐dimensional colloidal array template as the photoelectrode of a dye‐sensitized solar cell. Organic‐layer‐coated titania nanoparticles show an enhanced infiltration and a compact packing within the 3D array. Subsequent thermal decomposition to remove the organic template followed by impregnation with N‐719 dye results in excellent inverse‐opal photoelectrodes with a photo‐conversion efficiency as high as 3.47% under air mass 1.5 illumination. This colloidal‐template approach using non‐aggregated nanoparticles provides a simple and versatile way to produce efficient inverse‐opal structures with the ability to control parameters such as cavity diameter and film thickness.  相似文献   

10.
An optimized configuration for nanomaterials in working electrodes is vital to the high performance of dye‐sensitized solar cells (DSSCs). Here, a fabrication method is introduced for multi‐shell TiO2 hollow nanoparticles (MS‐TiO2‐HNPs) via a sol–gel reaction, calcination, and an etching process. The prepared uniform MS‐HNPs have a high surface area (ca. 171 m2 g?1), multireflection, and facile electrolyte circulation and diffusion. During the MS‐HNP fabrication process, the amount of SiO2 precursor and H2O under reaction has a significant effect on aggregation and side reactions. The etching process to obtain pure TiO2 is influenced by anatase crystallinity. Additionally, single‐shell (SS)‐TiO2‐HNPs and double‐shell (DS)‐TiO2‐HNPs are synthesized as a control. The MS‐TiO2‐HNPs exhibit a high surface area and enhance light reflectance, compared with the SS‐ and DS‐TiO2‐HNPs of the same size. The power conversion efficiency of the optimized MS‐TiO2‐HNP‐based DSSCs is 9.4%, compared with the 8.0% efficiency demonstrated by SS‐TiO2‐HNP‐DSSCs (a 17.5% improvement). These results enable the utilization of multifunctional MS‐HNPs in energy material applications, such as lithium ion batteries, photocatalysts, water‐splitting, and supercapacitors.  相似文献   

11.
Side group of ITIC‐like small molecular acceptor (SMA) plays a critical role in crystallization property. In this article, two new SMAs with n‐hexylthienyl and n‐hexylselenophenyl as side chain, namely ITCPTC‐Th and ITCPTC‐Se, are designed and synthesized by employing newly developed thiophene‐fused ending group (CPTCN). And thiophene and selenophene side group substituted effects of SMA‐based fullerene‐free polymer solar cells (PSCs) are investigated. A stronger σ‐inductive effect between selenophene side group and electron‐donating backbone endows ITCPTC‐Se with better optical absorption and higher LUMO level, ITCPTC‐Th‐based PSCs deliver a higher power conversion efficiency of 10.61%. Charge transport and collection, recombination loss mechanism, and morphology of blend films are intensively studied. These results confirm that side group substituted effects of SMAs are multiple and thiophene is a superior option to selenophene as aromatic side group of ITIC‐like SMAs.  相似文献   

12.
A critical component in the development of highly efficient dye‐sensitized solar cells is the interface between the ruthenium bipyridyl complex dye and the surface of the mesoporous titanium dioxide film. In spite of many studies aimed at examining the detailed anchoring mechanism of the dye on the titania surface, there is as yet no commonly accepted understanding. Furthermore, it is generally believed that a single monolayer of strongly attached molecules is required in order to maximize the efficiency of electron injection into the semiconductor. In this study, the amount of adsorbed dye on the mesoporous film is maximised, which in turn increases the light absorption and decreases carrier recombination, resulting in improved device performance. A process that increases the surface concentration of the dye molecules adsorbed on the TiO2 surface by up to 20% is developed. This process is based on partial desorption of the dye after the initial adsorption, followed by readsorption. This desorption/adsorption cycling process can be repeated multiple times and yields a continual increase in dye uptake, up to a saturation limit. The effect on device performance is directly related and a 23% increase in power conversion efficiency is observed. Surface enhanced Raman spectroscopy, infrared spectroscopy, and electrochemical impedance analysis were used to elucidate the fundamental mechanisms behind this observation.  相似文献   

13.
Solid‐state dye‐sensitized solar cells employing a solid organic hole‐transport material (HTM) are currently under intensive investigation, since they offer a number of practical advantages over liquid‐electrolyte junction devices. Of particular importance to the design of such devices is the control of interfacial charge transfer. In this paper, the factors that determine the yield of hole transfer at the dye/HTM interface and its correlation with solid‐state‐cell performance are identified. To this end, a series of novel triarylamine type oligomers, varying in molecular weight and mobility, are studied. Transient absorption spectroscopy is used to determine hole‐transfer yields and pore‐penetration characteristics. No correlation between hole mobility and cell performance is observed. However, it is found that the photocurrent is directly proportional to the hole‐transfer yield. This hole‐transfer yield depends on the extent of pore penetration in the dye‐sensitized film as well as on the thermodynamic driving force ΔGdye–HTM for interfacial charge transfer. Future design of alternative solid‐state HTMs should focus on the optimization of pore‐filling properties and the control of interfacial energetics rather than on increasing material hole mobilities.  相似文献   

14.
Novel conjugated organic dyes that have N,N‐dimethylaniline (DMA) moieties as the electron donor and a cyanoacetic acid (CAA) moiety as the electron acceptor were developed for use in dye‐sensitized nanocrystalline‐TiO2 solar cells (DSSCs). We attained a maximum solar‐energy‐to‐electricity conversion efficiency (η) of 6.8 % under AM 1.5 irradiation (100 mW cm–2) with a DSSC based on 2‐cyano‐7,7‐bis(4‐dimethylamino‐phenyl)hepta‐2,4,6‐trienoic acid (NKX‐2569): short‐circuit photocurrent density (Jsc) = 12.9 mA cm–2, open‐circuit voltage (Voc) = 0.71 V, and fill factor (ff) = 0.74. The high performance of the solar cells indicated that highly efficient electron injection from the excited dyes to the conduction band of TiO2 occurred. The experimental and calculated Fourier‐transform infrared (FT‐IR) absorption spectra clearly showed that these dyes were adsorbed on the TiO2 surface with the carboxylate coordination form. A molecular‐orbital calculation indicated that the electron distribution moved from the DMA moiety to the CAA moiety by photoexcitation of the dye.  相似文献   

15.
An optimized configuration of TiO2 microspheres in photoanodes is of great importance to prepare highly efficient dye‐sensitized solar cells (DSSCs). In this work, TiO2 microspheres with tunable diameter, pore size, and porosity are synthesized by subtly adjusting the synthesizing conditions, including ratios of deionized water, ammonia, and ethanol, respectively. TiO2 microspheres are obtained with large pore sizes and a high porosity without sacrificing specific surface areas. In addition, the effect of their porosity and pore size on the performance of DSSCs is investigated. As confirmed by the dye‐loading ability and electrolyte diffusion resistance, the large mesopores and the high porosity of the TiO2 microspheres can improve dye adsorption and facilitate electrolyte diffusion, giving rise to a high light‐harvesting and electron collection efficiency. Consequently, the highest photocurrent of 19.21 mA cm?2 and a power conversion efficiency of 9.98% are obtained by using the TiO2 microspheres with the highest porosity, compared with a 9.29% efficiency demonstrated by the lowest porosity (an improvement of 7.4%). By modifying the interconnection and the external pores of the microspheres photoanode, a high efficiency of 11.67% is achieved for a DSSC based on the most potent TiO2 microspheres.  相似文献   

16.
ZnO films consisting of either polydisperse or monodisperse aggregates of nanocrystallites were fabricated and studied as dye‐sensitized solar‐cell electrodes. The results revealed that the overall energy‐conversion efficiency of the cells could be significantly affected by either the average size or the size distribution of the ZnO aggregates. The highest overall energy‐conversion efficiency of ~4.4% was achieved with the film formed by polydisperse ZnO aggregates with a broad size distribution from 120 to 360 nm in diameter. Light scattering by the submicrometer‐sized ZnO aggregates was employed to explain the improved solar‐cell performance through extending the distance travelled by light so as to increase the light‐harvesting efficiency of photoelectrode film. The broad distribution of aggregate size provides the ZnO films with both better packing and an enhanced ability to scatter the incident light, and thus promotes the solar‐cell performance.  相似文献   

17.
The fabrication and functionalization of large‐area graphene and its electrocatalytic properties for iodine reduction in a dye‐sensitized solar cell are reported. The graphene film, grown by thermal chemical vapor deposition, contains three to five layers of monolayer graphene, as confirmed by Raman spectroscopy and high‐resolution transmission electron microscopy. Further, the graphene film is treated with CF4 reactive‐ion plasma and fluorine ions are successfully doped into graphene as confirmed by X‐ray photoelectron spectroscopy and UV‐photoemission spectroscopy. The fluorinated graphene shows no structural deformations compared to the pristine graphene except an increase in surface roughness. Electrochemical characterization reveals that the catalytic activity of graphene for iodine reduction increases with increasing plasma treatment time, which is attributed to an increase in catalytic sites. Further, the fluorinated graphene is characterized in use as a counter‐electrode in a full dye‐sensitized solar cell and shows ca. 2.56% photon to electron conversion efficiency with ca. 11 mA cm?2 current density. The shift in work function in F? doped graphene is attributed to the shift in graphene redox potential which results in graphene's electrocatalytic‐activity enhancement.  相似文献   

18.
The anchoring group in dye‐sensitized solar cells (DSSCs) profoundly affects the electron injection and durability on TiO2 films interface. Here, the hydantoin acceptor is introduced as anchoring group for DSSCs. The hydantoin based sensitizer achieves a photovoltaic efficiency of 7.66%, compared to 4.90% for sensitizer containing the conventional cyanoacrylic acid as anchoring group. Remarkably, the hydantoin anchoring group significantly enhances the electron‐injection efficiency (Φinj) and photocurrent (Jsc). The time dependent adsorption and desorption data indicate the strong binding strength and the superiority of stability for hydantoin based sensitizers. The Fourier transform infrared measurements investigate the adsorption mechanism of hydantoin on TiO2 interface. These results strongly corroborate the advantages of incorporating hydantoin as acceptor and anchoring group. As a consequence, the sensitizer HY‐4 with hydantoin approaches the photovoltaic efficiency of 8.32% under 0.1 sunlight illumination. These observations offer a new route to design and develop efficient sensitizers for DSSCs.  相似文献   

19.
Reversible photo‐induced performance deterioration is observed in mesoporous TiO2‐containing devices in an inert environment. This phenomenon is correlated with the activation of deep trap sites due to astoichiometry of the metal oxide. Interestingly, in air, these defects can be passivated by oxygen adsorption. These results show that the doping of TiO2 with aluminium has a striking impact upon the density of sub‐gap states and enhances the conductivity by orders of magnitude. Dye‐sensitized and perovskite solar cells employing Al‐doped TiO2 have increased device efficiencies and significantly enhanced operational device stability in inert atmospheres. This performance and stability enhancement is attributed to the substitutional incorporation of Al in the anatase lattice, “permanently” passivating electronic trap sites in the bulk and at the surface of the TiO2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号