首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-loss dielectric ceramics based on Ba(B'1/2Ta1/2)O3 (B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In) complex perovskites have been prepared by the solid-state ceramic route. The dielectric properties (ɛr, Q u, and τf) of the ceramics have been measured in the frequency range 4–6 GHz by the resonance method. The resonators have a relatively high dielectric constant and high quality factor. Most of the compounds have a low coefficient of temperature variation of the resonant frequencies. The microwave dielectric properties have been improved by the addition of dopants and by solid solution formation. The solid solution Ba[(Y1− x Pr x )1/2Ta1/2]O3 has x =0.15, with ɛr=33.2, Q u× f =51,500 GHz, and τf≈0. The microwave dielectric properties of Ba(B'1/2Ta1/2)O3 ceramics are found to depend on the tolerance factor ( t ), ionic radius, and ionization energy.  相似文献   

2.
The Ca(B'1/2Nb1/2)O3 [B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, and In] complex perovskites have been prepared by conventional solid-state ceramic route. The structure and microstructure of the ceramics have been characterized by X-ray diffraction and scanning electron microscopy methods. The ceramics have dielectric constant (ɛr) in the range 23–32, normalized Q -factor ( Q u× f ) 11 000–38 000 GHz and temperature coefficient of resonant frequency (τf) −43–5.2 ppm/°C. The microwave dielectric properties of Ca(B'1/2Nb1/2)O3 ceramics are found to depend on the ionic radii of B'-site elements and tolerance factor ( t ). The substitution of Ba2+ and Sr2+ for Ca2+ resulted a phase transition in Ca(B'1/2Nb1/2)O3 ceramics. The (Ca0.05Ba0.95) (Y1/2Nb1/2)O3 has τf close to zero (1.2 ppm/°C) with ɛr=35 and Q u× f =48 500 GHz and is proposed as a useful material for base station applications. Dielectric properties of the Ca(B'1/2Nb1/2)O3 ceramics were tailored by the addition of TiO2 and CaTiO3.  相似文献   

3.
The microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 (NCT) ceramics using starting powders of Nd2O3, CoO, and TiO2 prepared by the conventional solid-state route have been researched. The dielectric constant values (ɛr) saturated at 24.8–27. Quality factor ( Q × f ) values of 37 900–140 000 (at 9 GHz) and the measured τf values ranging from −45 to −48 ppm/°C can be obtained when the sintering temperatures are in the range of 1410°–1500°C. The ɛr value of 27, the Q × f value of 140 000 (at 9 GHz) and the τf value of −46 ppm/°C were obtained for NCT ceramics sintered at 1440°C for 4 h. For applications of high selective microwave ceramic resonator, filter, and antenna, NCT is proposed as a suitable material candidate.  相似文献   

4.
The BiVO4 additive was found effective for low-temperature firing of ZnNb2O6 polycrystalline ceramics below 950°C in air without a serious degradation in their microwave dielectric properties. Dense BiVO4-doped ZnNb2O6 samples of a relative sintered density over 95% could be prepared even at 925°C. An optimally processed specimen exhibited excellent microwave dielectric properties of Q · f = 55000 GHz, ɛr= 26, and τf=−57 ppm/°C. With increasing BiVO4 addition up to 20 mol% relative to ZnNb2O6, while the quality factor Q · f was gradually decreased, the relative dielectric constant, ɛr, was linearly increased and the temperature coefficient of resonant frequency, τf, was slightly increased. The variations in Q · f and ɛr are surely attributable to the residual BiVO4 in the ZnNb2O6 matrix. An unexpected slight increase in τf is probably due to the formation of the Bi(V,Nb)O4-type solid solution.  相似文献   

5.
The microwave dielectric properties and the microstructures of Nd(Zn1/2Ti1/2)O3 (NZT) ceramics prepared by the conventional solid-state route have been studied. The prepared NZT exhibited a mixture of Zn and Ti showing 1:1 order in the B-site. The dielectric constant values (ɛr) saturated at 29.1–31.6. The quality factor ( Q × f ) values of 56 700–170 000 (at 8.5 GHz) can be obtained when the sintering temperatures are in the range of 1300°–1420°C. The temperature coefficient of resonant frequency τf was not sensitive to the sintering temperature. The ɛ r value of 31.6, the Q × f value of 170 000 (at 8.5 GHz), and the τf value of −42 ppm/°C were obtained for NZT ceramics sintering at 1330°C for 4 h. For applications of high selective microwave ceramic resonators, filters, and antennas, NZT is proposed as a suitable material candidate.  相似文献   

6.
(Li1/2Nd1/2)2+ substitution into the A site and (Mg1/3Ta2/3)4+ substitution into the B site of CaTiO3 ceramic were investigated, respectively. The modified CaTiO3 dielectric ceramics prepared by conventional solid-state method exhibit single perovskite structure and improved dielectric properties. Optimal microwave dielectric properties of ɛr=112.6, Q × f =4480 GHz, τf=8.2 ppm/°C in [Ca0.4(Li1/2Nd1/2)0.6] TiO3 and ɛr=60.2, Q × f =36900 GHz, τf=−10.1 ppm/°C in Ca[Ti0.4(Mg1/3Ta2/3)0.6] O3 are obtained, which indicates their potential for microwave application. The effects of change of crystal structure on dielectric properties are also discussed.  相似文献   

7.
Low-loss ceramics having the chemical formula Mg2(Ti1− x Sn x )O4 for x ranging from 0.01 to 0.09 have been prepared by the conventional mixed oxide route and their microwave dielectric properties have been investigated. X-ray powder diffraction patterns indicate the corundum-structured solid solutions for the prepared compounds. In addition, lattice parameters, which linearly increase from 8.4414 to 8.4441 Å with the rise of x from 0.01 to 0.09, also confirm the forming of solid solutions. By increasing x from 0.01 to 0.05, the Q × f of the specimen can be tremendously boosted from 173 000 GHz to a maximum 318 000 GHz. A fine combination of microwave dielectric properties (ɛr∼15.57, Q × f ∼318 000 GHz at 10.8 GHz, τf∼−45.1 ppm/°C) was achieved for Mg2(Ti0.95Sn0.05)O4 ceramics sintered at 1390°C for 4 h. Ilmenite-structured Mg(Ti0.95Sn0.05)O3r∼16.67, Q × f ∼275 000 GHz at 10.3 GHz, τf∼−53.2 ppm/°C) was detected as a second phase. The presence of the second phase, however, would cause no significant variation in the dielectric properties of the specimen, because the second phase properties are very similar to the primary phase. These unique properties, in particular, low ɛr and high Q × f , can be utilized as a very promising dielectric material for ultra-high-frequency applications.  相似文献   

8.
The microwave dielectric properties of two A-site-deficient perovskite-type ceramics in the La6Mg4A2W2O24 [A=Ta and Nb] system were investigated. The compounds were synthesized by the solid-state ceramic route. The structure and microstructure were analyzed using X-ray diffraction and scanning electron microscopy techniques. The dielectric properties were measured in the microwave frequency range [4–6 GHz] by the resonance method. La6Mg4Ta2W2O24 had Q u× f =13 600 GHz, ɛr=25.2, and τf=−45 ppm/°C and La6Mg4Nb2W2O24 had Q u× f =16 400 GHz, ɛr=25.8, and τf=−56 ppm/°C.  相似文献   

9.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

10.
(Ca1+ x Sm1− x )(Al1− x Ti x )O4 (0≤ x ≤0.4) ceramics were synthesized by solid-state reaction method and their microstructures and microwave dielectric properties were investigated. X-ray diffraction analysis and energy-dispersive X-ray analysis indicated that the matrix phase was a solid solution with a composition represented by the chemical formula (Ca1+ x Sm1− x ) (Al1− x Ti x )O4 and minor amount of (Ca,Sm)(Al,Ti)O3 secondary phase was detected. Ca/Ti cosubstitution could significantly improve the microwave dielectric characteristics of CaSmAlO4 ceramics, and the excellent microwave dielectric characteristics were obtained in the modified ceramics as ɛr=19–23, Q × f =49 100–118 700 GHz, and τf=−15–15 ppm/°C.  相似文献   

11.
The microwave dielectric properties of the (1− x )CaTiO3– x Ca(Zn1/3Nb2/3)O3 ceramic system have been investigated. The ceramic samples sintered at 1300°–1450°C for 4 h in air exhibit orthorhombic pervoskite and form a complete solid solution for different x value. When the x value increased from 0.2 to 0.8, the permittivity ɛr decreased from 115 to 42, the unloaded quality factor Q × f increased from 5030 to 13 030 GHz, and the temperature coefficient τf decreased from 336 to −28 ppm/°C. When x =0.7, the best combination of dielectric properties, a near zero temperature coefficient of resonant frequency of τf∼−6 ppm/°C, Q × f ∼10 860 GHz and ɛr∼51 is obtained.  相似文献   

12.
The microwave dielectric properties and microstructures of compounds in the solid solution series x BaTiO3–(1− x )La(Mg1/2Ti1/2)O3 (BTLMT) have been investigated. The structural phase transitions that occur as a function of x have been studied and are related to changes in the dielectric properties. For compounds where x ≤ 0.1, X-ray diffraction (XRD) showed evidence of 1:1 ordering between Mg and Ti cations. For x ≤ 0.3, XRD and electron diffraction revealed that compounds were tilted in both antiphase and in-phase. However, for 0.3 < x < 0.7, only antiphase tilting was present. The temperature coefficient of resonant frequency (τf) vs the relative permittivity (ɛr) was linear until x = 0.5 at which point in the solid solution the transition to a nontilted structure resulted in nonlinear behavior. τf values close to zero (−2 ppm/°C) were achieved at x = 0.5 (ɛr∼ 60), which had a quality factor ( Q · f o) of 9600 GHz.  相似文献   

13.
We report the microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 ceramics prepared by the conventional solid-state route. The prepared Nd(Co1/2Ti1/2)O3 exhibits a mixture of Co and Ti showing a 1:1 order in the B site. Lowering the sintering temperature (as low as 1260°C) and promoting the densification of Nd(Co1/2Ti1/2)O3 ceramics could be effectively achieved by adding CuO (up to 0.75 wt%). At 1350°C, Nd(Co1/2Ti1/2)O3 ceramics with 0.5 wt% CuO addition possess a dielectric constant (ɛr) of 27.6, a Q × f value of 165 000 GHz (at 9 GHz), and a temperature coefficient of resonant frequency (τf) of −20 ppm/°C. By comparing with pure Nd(Co1/2Ti1/2)O3 ceramics, incorporating additional CuO helps to render a dielectric material with a higher dielectric constant, a smaller τf value, and a 20% dielectric loss reduction, which makes it a very promising candidate for applications requiring low microwave dielectric loss.  相似文献   

14.
Dense (1− x )Ca(Mg1/3Ta2/3)O3/ x CaTiO3 ceramics (0.1≤ x ≤0.9) were prepared by a solid-state reaction process. The crystal structures and microstructures were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Single-phase solid solutions were obtained in the entire composition range. Long-range 1:2 ordering of B-site cations and oxygen octahedra tilting lead to the monoclinic symmetry with space group P 21/ c for x =0.1. For x above 0.1, the long-range ordering was destroyed and the crystal structure became the orthorhombic with space group Pbnm . The microwave dielectric properties showed a strong dependence on the composition and microstructure. The dielectric constant and temperature coefficient of resonant frequency increased nonlinearly as the CaTiO3 content increased while the Qf values decreased approximately linearly. Good combination of microwave dielectric properties was obtained at x =0.45, where ɛr=45.1, Qf =34 800 GHz, and τf=17.4 ppm/°C.  相似文献   

15.
Re3Ga5O12 (Re: Nd, Sm, Eu, Dy, Yb, and Y) garnet ceramics were synthesized and their microwave dielectric properties were investigated for advanced substrate materials in microwave integrated circuits. The Re3Ga5O12 ceramics sintered at 1350°–1500°C had a high-quality factor ( Q × f ) ranging from 40 000 to 192 173 GHz and a low-dielectric constant (ɛr) of between 11.5 and 12.5. They also exhibited a relatively stable temperature coefficient of resonant frequency (τf) in the range of −33.7 to −12.4 ppm/°C. In particular, the Sm3Ga5O12 ceramics sintered at 1450°C exhibited good microwave dielectric properties of ɛr=12.4, Q × f =192 173 GHz, and τf=−19.2 ppm/°C.  相似文献   

16.
The columbites MgNb2O6, MgTa2O6, and corundum-type Mg4Nb2O9 ceramics were prepared by the conventional solid-state ceramic route. The structure and microstructure of the sintered samples were investigated by X-ray diffraction and scanning electron microscopic techniques. The microwave dielectric properties of the samples were measured by the resonance method in the frequency range 4–6 GHz. The dielectric properties have been tailored by forming a solid solution between MgNb2O6 and MgTa2O6 and by the substitution of TiO2 for Nb2O5 in both MgNb2O6 and Mg4Nb2O9 ceramics. The Mg(Nb0.7Ta1.3)O6 has ɛr=29, Q u× f =67 800 GHz, and τf=0.8 ppm/°C and the MgO–(0.4)Nb2O5–(1.5)TiO2 composition has ɛr=34.5, Q u× f =81 300 GHz, and τf=−2 ppm/°C.  相似文献   

17.
A Zn2Te3O8 ceramic was investigated as a promising dielectric material for low-temperature co-fired ceramics (LTCC) applications. The Zn2Te3O8 ceramic was synthesized using the solid-state reaction method by sintering in the temperature range 540°–600°C. The structure and microstructure of the compounds were investigated using X-ray diffraction (XRD) and scanning electron microscopy methods. The dielectric properties of the ceramics were studied in the frequency range 4–6 GHz. The Zn2Te3O8 ceramic has a dielectric constant (ɛr) of 16.2, a quality factor ( Q u× f ) of 66 000 at 4.97 GHz, and a temperature coefficient of resonant frequency (τf) of −60 ppm/°C, respectively. Addition of 4 wt% TiO2 improved the τf to −8.7 ppm/°C with an ɛr of 19.3 and a Q u× f of 27 000 at 5.14 GHz when sintered at 650°C. The chemical reactivity of the Zn2Te3O8 ceramic with Ag and Al metal electrodes was also investigated.  相似文献   

18.
The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this study. The forming of Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. By increasing x , not only could the Q × f of the Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution be tremendously boosted from 83 600 GHz at x =0 to a maximum 152 000 GHz at x =0.05, the highest ɛr∼24.6 could also be achieved simultaneously. It was mainly due to the uniform grain morphology and the highest relative density of the specimen. A fine combination of microwave dielectric properties (ɛr∼24.6, Q × f ∼152 000 GHz at 8.83 GHz, τf∼–71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.  相似文献   

19.
Dielectric properties of the system (1 − x)(La1/2Na1/2)TiO3 x Ca(Fe1/2Nb1/2)O3, where 0.4 # x # 0.6, have been investigated at microwave frequencies. The temperature coefficient of resonant frequency (τf), nearly 0 ppm/°C, was realized at x = 0.58. These ceramics had perovskite structure and showed relatively low dielectric losses. A new dielectric material applicable to microwave devices having Q · f of 12000–14000 GHz and a dielectric constant (εr) of 59–60 has been obtained at 1300–1350°C for 5–15 h sintering.  相似文献   

20.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号