首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing complexity and cost of software-intensive systems has led developers to seek ways of reusing software components across development projects. One approach to increasing software reusability is to develop a software product-line (SPL), which is a software architecture that can be reconfigured and reused across projects. Rather than developing software from scratch for a new project, a new configuration of the SPL is produced. It is hard, however, to find a configuration of an SPL that meets an arbitrary requirement set and does not violate any configuration constraints in the SPL.Existing research has focused on techniques that produce a configuration of an SPL in a single step. Budgetary constraints or other restrictions, however, may require multi-step configuration processes. For example, an aircraft manufacturer may want to produce a series of configurations of a plane over a span of years without exceeding a yearly budget to add features.This paper provides three contributions to the study of multi-step configuration for SPLs. First, we present a formal model of multi-step SPL configuration and map this model to constraint satisfaction problems (CSPs). Second, we show how solutions to these SPL configuration problems can be automatically derived with a constraint solver by mapping them to CSPs. Moreover, we show how feature model changes can be mapped to our approach in a multi-step scenario by using feature model drift. Third, we present empirical results demonstrating that our CSP-based reasoning technique can scale to SPL models with hundreds of features and multiple configuration steps.  相似文献   

2.

Software Product Line (SPL) customizes software by combining various existing features of the software with multiple variants. The main challenge is selecting valid features considering the constraints of the feature model. To solve this challenge, a hybrid approach is proposed to optimize the feature selection problem in software product lines. The Hybrid approach ‘Hyper-PSOBBO’ is a combination of Particle Swarm Optimization (PSO), Biogeography-Based Optimization (BBO) and hyper-heuristic algorithms. The proposed algorithm has been compared with Bird Swarm Algorithm (BSA), PSO, BBO, Firefly, Genetic Algorithm (GA) and Hyper-heuristic. All these algorithms are performed in a set of 10 feature models that vary from a small set of 100 to a high-quality data set of 5000. The detailed empirical analysis in terms of performance has been carried out on these feature models. The results of the study indicate that the performance of the proposed method is higher to other state-of-the-art algorithms.

  相似文献   

3.
Initiating software product lines   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
More and more organizations adopt software product lines to leverage extensive reuse and deliver a multitude of benefits such as increased quality and productivity and a decrease in cost and time-to-market of their software development. When compared to the vast amount of research on developing product lines, relatively little work has been dedicated to the actual use of product lines to derive individual products, i.e., the process of product derivation. Existing approaches to product derivation have been developed independently for different aims and purposes. While the definition of a general approach applicable to every domain may not be possible, it would be interesting for researchers and practitioners to know which activities are common in existing approaches, i.e., what are the key activities in product derivation. In this paper we report on how we compared two product derivation approaches developed by the authors in two different, independent research projects. Both approaches independently sought to identify product derivation activities, one through a process reference model and the other through a tool-supported derivation approach. Both approaches have been developed and validated in research industry collaborations with different companies. Through the comparison of the approaches we identify key product derivation activities. We illustrate the activities’ importance with examples from industry collaborations. To further validate the activities, we analyze three existing product derivation approaches for their support for these activities. The validation provides evidence that the identified activities are relevant to product derivation and we thus conclude that they should be considered (e.g., as a checklist) when developing or evaluating a product derivation approach.  相似文献   

6.
Product line engineering has become an important and widely used approach for efficiently developing portfolios of software products. The idea is to develop a set of products as a single, coherent development task from a core asset base (sometimes called a platform), a collection of artifacts specifically designed for use across a portfolio. This approach produces order-of-magnitude economic improvements compared to one-at-a-time software system development. Because the product line approach isn't limited to specific technical properties of the planned software but rather focuses on economic characteristics, high return on investment has become the anthem of the approach's protagonists. Our software product line cost model can calculate the costs and benefits (and hence the ROI) that we can expect to accrue from various product line development situations. It's also straightforward and intuitive.  相似文献   

7.
Software product line (SPL) is a set of software applications that share a common set of features satisfying the specific needs of a particular market segment. SPL engineering is a paradigm to develop software applications that commonly use a feature model to capture and document common and variable features, and their relationships. A big challenge is to derive one product among all possible products in the SPL, which satisfies the business and customer requirements. This task is known as product configuration. Although product configuration has been extensively investigated in the literature, customer's preferences are frequently neglected. In this paper, we propose a novel approach to configure a product that considers both qualitative and quantitative feature properties. We model the product configuration task as a combinatorial optimization problem, and heuristic and exact algorithms are proposed. As far as we are concerned, this proposal is the first work in the literature that considers feature properties in both leaf and nonleaf features. Computational experiments showed that the best of our heuristics found optimal solutions for all instances where those are known. For the instances where optimal solutions are not known, our heuristic outperformed the best solution obtained by a one‐hour run of the exact algorithm by up to 67.89%.  相似文献   

8.
We present SNIP, an efficient model checker for software product lines (SPLs). Variability in software product lines is generally expressed in terms of features, and the number of potential products is exponential in the number of features. Whereas classical model checkers are only capable of checking properties against each individual product in the product line, SNIP exploits specifically designed algorithms to check all products in a single step. This is done by using a concise mathematical structure for product line behaviour, that exploits similarities and represents the behaviour of all products in a compact manner. Specification of an SPL in SNIP relies on the combination of two specification languages: TVL to describe the variability in the product line, and fPromela to describe the behaviour of the individual products. SNIP is thus one of the first tools equipped with specification languages to formally express both the variability and the behaviours of the products of the product line. The paper assesses SNIP and suggests that this is the first model checker for SPLs that can be used outside the academic arena.  相似文献   

9.
The benefits of following a product line approach to develop similar software systems are well documented. Nevertheless, some case studies have revealed significant barriers to adopt such approach. In order to minimize the paradigm shift between conventional software engineering and software product line engineering, this paper presents a new development process where the products of a domain are made by analogy to an existing product. Furthermore, this paper discusses the capabilities and limitations of different techniques to implement the analogy relation and proposes a new language to overcome such limitations.  相似文献   

10.
ContextA Software Product Line is a set of software systems that are built from a common set of features. These systems are developed in a prescribed way and they can be adapted to fit the needs of customers. Feature models specify the properties of the systems that are meaningful to customers. A semantics that models the feature level has the potential to support the automatic analysis of entire software product lines.ObjectiveThe objective of this paper is to define a formal framework for Software Product Lines. This framework needs to be general enough to provide a formal semantics for existing frameworks like FODA (Feature Oriented Domain Analysis), but also to be easily adaptable to new problems.MethodWe define an algebraic language, called SPLA, to describe Software Product Lines. We provide the semantics for the algebra in three different ways. The approach followed to give the semantics is inspired by the semantics of process algebras. First we define an operational semantics, next a denotational semantics, and finally an axiomatic semantics. We also have defined a representation of the algebra into propositional logic.ResultsWe prove that the three semantics are equivalent. We also show how FODA diagrams can be automatically translated into SPLA. Furthermore, we have developed our tool, called AT, that implements the formal framework presented in this paper. This tool uses a SAT-solver to check the satisfiability of an SPL.ConclusionThis paper defines a general formal framework for software product lines. We have defined three different semantics that are equivalent; this means that depending on the context we can choose the most convenient approach: operational, denotational or axiomatic. The framework is flexible enough because it is closely related to process algebras. Process algebras are a well-known paradigm for which many extensions have been defined.  相似文献   

11.
Requirements Engineering - Software Product Line Engineering (SPLE) is a promising paradigm for reusing knowledge and artifacts among similar software products. However, SPLE methods and techniques...  相似文献   

12.
13.
In software product line engineering, the customers mostly concentrate on the functionalities of the target product during product configuration. The quality attributes of a target product, such as security and performance, are often assessed until the final product is generated. However, it might be very costly to fix the problem if it is found that the generated product cannot satisfy the customers’ quality requirements. Although the quality of a generated product will be affected by all the life cycles of product development, feature-based product configuration is the first stage where the estimation or prediction of the quality attributes should be considered. As we know, the key issue of predicting the quality attributes for a product configured from feature models is to measure the interdependencies between functional features and quality attributes. The current existing approaches have several limitations on this issue, such as requiring real products for the measurement or involving domain experts’ efforts. To overcome these limitations, we propose a systematic approach of modeling quality attributes in feature models based on domain experts’ judgments using the analytic hierarchical process (AHP) and conducting quality aware product configuration based on the captured quality knowledge. Domain experts’ judgments are adapted to avoid generating the real products for quality evaluation, and AHP is used to reduce domain experts’ efforts involved in the judgments. A prototype tool is developed to implement the concepts of the proposed approach, and a formal evaluation is carried out based on a large-scale case study.  相似文献   

14.
15.
Delta-oriented programming is a compositional approach to flexibly implementing software product lines. A product line is represented by a code base and a product line declaration. The code base consists of a set of delta modules specifying modifications to object-oriented programs. A particular product in a delta-oriented product line is generated by applying the modifications contained in the suitable delta modules to the empty program. The product-line declaration provides the connection of the delta modules with the product features. This separation increases the reusability of delta modules. In this paper, we provide a foundation for compositional type checking of delta-oriented product lines of Java programs by presenting a minimal core calculus for delta-oriented programming. The calculus is equipped with a constraint-based type system that allows analyzing each delta module in isolation, such that the results of the analysis can be reused. By relying only on the analysis results for the delta modules and on the product line declaration, it is possible to establish whether all the products of the product line are well typed according to the fragment of the Java type system modeled by the calculus.  相似文献   

16.
Families of embedded discrete finite state programs are modeled using input-enabled alternating transition systems. One model describes all functionality, while each variant is defined by an environment, describing its possible uses. The environments show both the inputs that a system can receive and indicate which of the system’s responses are relevant for the environment. The latter trait, called color-blindness, creates new possibilities for system transformations in the specialization process. We demonstrate the use of the framework by applying it to two classes of realistic design languages. An example of a product line of alarm clocks is used throughout the article.  相似文献   

17.
18.
19.
A model-driven traceability framework for software product lines   总被引:1,自引:0,他引:1  
Software product line (SPL) engineering is a recent approach to software development where a set of software products are derived for a well defined target application domain, from a common set of core assets using analogous means of production (for instance, through Model Driven Engineering). Therefore, such family of products are built from reuse, instead of developed individually from scratch. SPL promise to lower the costs of development, increase the quality of software, give clients more flexibility and reduce time to market. These benefits come with a set of new problems and turn some older problems possibly more complex. One of these problems is traceability management. In the European AMPLE project we are creating a common traceability framework across the various activities of the SPL development. We identified four orthogonal traceability dimensions in SPL development, one of which is an extension of what is often considered as “traceability of variability”. This constitutes one of the two contributions of this paper. The second contribution is the specification of a metamodel for a repository of traceability links in the context of SPL and the implementation of a respective traceability framework. This framework enables fundamental traceability management operations, such as trace import and export, modification, query and visualization. The power of our framework is highlighted with an example scenario.  相似文献   

20.
一种面向产品线的特征依赖建模方法   总被引:2,自引:1,他引:1  
罗代忠  赵文耘 《计算机应用》2008,28(9):2349-2352
特征依赖建模是描述特征间相互约束的模型,是软件产品线开发中的一项关键活动。引入了特征局部依赖和全局依赖关系,在对特征依赖关系分析的基础上,提出了一种特征依赖建模方法,该方法不仅支持分解、泛化等特征局部依赖描述,还支持配置依赖、运行依赖和影响依赖等全局依赖建模。通过一个空调控制系统的产品线特征依赖建模实例验证了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号