首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《IEEE sensors journal》2008,8(11):1856-1861
In order to develop a pH sensor having a good pH-sensing characteristic, electrolyte-insulator-semiconductor capacitors using a high-k Pr$_{2}$O$_{3}$ thin film as the sensing membrane were fabricated on silicon substrates by reactive radio frequency sputtering. The structural and morphological features of these films with annealing at various temperatures were studied by X-ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy. The Pr$_{2}$O $_{3}$ sensing film after annealing at 900$;^{circ}$C is suggested to the increase in the interfacial SiO $_{2}$ and silicate formation, and the high surface roughness. Therefore, a physical vapor deposition Pr$_{2}$O $_{3}$ film is adopted as a new pH-sensing layer. The result produces a pH response of 52.9 mV/pH $({rm pH}=2hbox{--}12)$, a hysteresis voltage of 17.5 mV $({rm pH}=7 to 4 to 7to 10 to 7)$, and a drift rate of 2.15 mV/h (${rm pH}=7$ buffer solution).   相似文献   

2.
Using the open-cell photoacoustic technique, we have measured the room-temperature thermal diffusivities of the colossal magnetoresistive material La$_{0.67}$Ca$_{0.33}$MnO$_{3 }$, sintered between 1100$;^{circ}$ C and 1350$;^{circ}$ C, with average grain sizes 1, 3, 5, and 10 $mu$m. We obtained the thermal diffusivities by analyzing the phase of photoacoustic signals in thermally thick samples using Calderon's method. We found that the insulator-metal transition temperature does not depend on the grain size ($T_{rm IM} sim 272$ K). However, the thermal diffusivity increases with grain size, with values between 0.431 and 0.969 mm $^{2}$s $^{-1}$. Other related electrical and thermal properties, including the electrical conductivity, thermal conductivity, and phonon mean free path, are also dependent on the grain size. The electronic contribution to the thermal conductivity is 2%–3% of the total thermal conductivity for smaller grain sizes (1–5 $mu$m) and increases to about 24% when the grain size is increased to 10 $mu$ m.   相似文献   

3.
We investigated the influence of ZrO$_{2}$ on the microstructure and electromagnetic properties of MnZn ferrites by characterizing fracture surface micrographs, magnetic properties, and dc resistivity. Powders of Mn $_{0.68}$Zn $_{0.25}$Fe $_{2.07}$O $_{4}$ composition were prepared by the conventional ceramic technique. Toroidal cores were sintered at 1350 $^{circ}$C for 4 h in N$_{2}$/O$_{2}$ atmosphere with 4% oxygen. The results show that the lattice constant and average grain size increase with ZrO$_{2}$ concentration, but excessive ZrO $_{2}$ concentration will result in exaggerated grain growth and porosity increase. The dc resistivity, activation energy, saturation magnetic flux density, and initial magnetic permeability increase monotonically when the ZrO$_{2}$ concentration is not more than 0.04 wt% and then decrease with further increase of ZrO$_{2}$ concentration. On the other hand, the porosity, drift mobility, resonance frequency, and core loss decrease initially and then increase with the increase of ZrO$_{2}$ concentration.   相似文献   

4.
We have studied room-temperature ferromagnetism (RTFM) in Sn$_{1 - {rm x}}$Co$_{rm x}$O$_{2}$ powders and films fabricated by the sol-gel method. Our X-ray diffraction, high-resolution transmission microscopy, and X-ray photoelectron spectroscopy results show that all the samples have a pure rutile structure, and Co ions have a chemical valence of 2+. In addition, the magnetic moment per Co ion drops rapidly with the increase of Co content. Interestingly, Sn $_{1 - {rm x}}$Co $_{rm x}$O $_{2}$ films spin-coated on a Si (111) substrate have much larger magnetic moment than powder samples, because film samples have larger domain volumes, which may induce stronger long-range magnetic exchange coupling.   相似文献   

5.
An evanescent wave biosensor is designed and developed using a single mode planar optical waveguide based on a spin coated clad of leaf extract of Alstonia Scholaris. The fabricated sensor showed ${rm CO}_{2}$ concentration dependent response. The specialty of this sensor is that it can be used when stored at room temperature (25$~^{circ}{rm C}$) up to a maximum of 25–30 days with 90% retention of original sensitivity. These ${rm CO}_{2}$ sensing biochips showed good operational efficiency for 10 cycles. The planar optical waveguide is versatile, easy to fabricate and can be used for ppm level ${rm CO}_{2}$ measurement with good sensitivity. Cross sensitivity with respect to humidity is studied. The sensor exhibited a short response time of 4–5 s and recovery time of 25 s with good repeatability and reproducibility.   相似文献   

6.
We propose a theoretical design for a magnetic memory cell, based on thin-film ferromagnetic nanorings, that can efficiently store, record, and read out information. An information bit is represented by the polarity of a stable 360$^{circ}$ domain wall introduced into the ring. Switching between the two magnetization states is done by a current applied to a wire passing through the ring, whereby the 360$^{circ}$ domain wall splits into two charged 180 $^{circ}$ walls, which then move to the opposite extreme of the ring to recombine into a 360 $^{circ}$ wall of the opposite polarity.   相似文献   

7.
We clearly detected double hysteresis by increasing Co layer thickness and decreasing the number of bilayers in perpendicular exchange biased [Pd(0.6)/Co$(t)$] $_{rm n}$/FeMn(11.6 nm) thin films. In-plane tensile stress calculations confirmed that the appearance of double hysteresis is closely related to the degradation of stress-induced perpendicular anisotropy in the [Pd/Co] multilayers. Furthermore, annealing at the magnetic field applied perpendicular to the film plane directly verified that the enhancement of thermally induced perpendicular anisotropy, $K_{rm eff-induced}$, in the [Pd/Co] multilayers is the main physical reason for removal of the double hysteresis. All our experimental and theoretical results demonstrated that perpendicular anisotropy is the dominant factor in controlling the double hysteresis behavior of perpendicularly magnetized [Pd/Co]$_{rm n}$/FeMn exchange biased thin films.   相似文献   

8.
《IEEE sensors journal》2008,8(12):2000-2007
An optical fiber chemical sensor for detecting/monitoring trace ammonia in high-temperature gas streams has been developed. This sensor uses a ${hbox{CuCl}}_{2}$-doped porous silica optical fiber, prepared via a previously reported sol-gel process, as a transducer. Trace ammonia in a gas sample diffuses into the porous fiber to react with the doped agent to form a ${hbox{Cu}}^{2+}$-ammonia complex. The concentration of the ${hbox{Cu}}^{2+}$ -ammonia complex inside the porous silica optical fiber is proportional to ammonia concentration in the gas sample, to which the sensing porous silica fiber is exposed. Therefore, ammonia concentration in the gas sample can be detected through detecting the optical absorption signal of the formed ${hbox{Cu}}^{2+}$-ammonia complex inside the fiber by using a fiber-optic UV/Vis absorption spectrometric method. This sensor can be used to reversibly monitor trace ammonia in a gas sample at an elevated temperature up to 450 $^{circ}$C in the tested range. A detection limit of 0.24 ppmv ammonia in an air gas sample was achieved when the sensor was tested at a temperature of 450 $^{circ}$ C.   相似文献   

9.
Results of domain structures observation of individual Ni $_{80}$Fe $_{20}$ and Co sublayers in sputter deposited (NiFe/Au/Co/Au)$_{10}$ multilayers, using an element-sensitive method: the photoemission electron microscopy combined with soft X-ray magnetic circular dichroism, are presented. Also, overall domain structures were studied with magnetic force microscopy. The studies allowed us to reveal submicron stripe domains in the investigated samples and the replication of the stripe domains from the Co layers with perpendicular anisotropy to the NiFe layers with easy-plane anisotropy.   相似文献   

10.
The spin Seebeck effect (SSE) has been measured in Ni $_{81}$Fe $_{19}$ thin films which have different widths by using the inverse spin Hall effect (ISHE) in a Pt wire. The ISHE voltage induced by SSE is enhanced by lengthening the Pt wire. Combined with ISHE, SSE is applicable to the production of electric generators in which the thermoelectric figures of merit are tunable in terms of device structure.   相似文献   

11.
We compare the direct and inverse techniques of measuring magnetostriction in magnetic thin films. We chose a set of four magnetic thin film samples (Co$_{95}$Fe$_5$, Co$_{60}$Fe$_{20}$B$_{20}$, Ni$_{65}$Fe$_{15}$Co$_{20}$, and Ni$_{80}$Fe$_{20}$) for the measurements, representing positive and negative magnetostriction and having saturation magnetostriction of magnitudes ranging from $10^{-7}$ to $10^{-5}$. We made the direct measurements on a high-precision optical cantilever beam system, and we carried out the inverse magnetostriction measurements on a nondestructive inductive $Bhbox{-}H$ looper with three-point bending stage.   相似文献   

12.
We present two eddy-current field potential formulations to solve rotating electrical machine problems by applying the finite-element method (FEM) using the motional ${mbi A}^{*}{-}{mbi A}$-potential formulation and the motional ${mbi T}, {bf Phi}{-}{bf Phi}$-potential formulation. We use the single-phase and three-phase solid-rotor induction motors of Problem No. 30a of TEAM Workshops to compare the potential formulations. We have solved both problems in the time domain and the frequency domain.   相似文献   

13.
《IEEE sensors journal》2009,9(3):277-284
A novel ruthenium-doped titanium dioxide (TiO $_{2}$: Ru) film for pH detection is based on an ion-sensitive extended gate field effect transistor (ISEGFET) sensor. For the preparation of the TiO$_{2}$ : Ru sensing film, a specific processing for metal modification of TiO$_{2}$ thin film is deposited by a co-sputtering system. After thermal annealing treatment, material analysis of the sensing layer is measured by SEM, Hall measurement system and electrical detection system. The average sensitivity of TiO$_{2}$: Ru for hydrogen ion detection is about 55.20 mV/pH (concentration range between pH1 and pH13). The effect of long-term drift for TiO$_{2}$ : Ru ISEGFET-based sensor is presented. Drift rate of the sensor for pH is 0.745 mV/h for 12 h. In order to prepare the calcium ion sensor, the sensing membrane of polymer materials is based on TiO $_{2}$: Ru ISEGFET-based sensor by physical adsorption. The average sensitivity of the calcium ion sensor in the concentration ranging between 1 M and 1$,times,$ 10$^{-3}$ M CaCl$_{2}$ is about 29.65 mV/pCa.   相似文献   

14.
This paper describes a sampling system designed using a commercial sigma–delta analog-to-digital converter ($Sigma$$ Delta$ ADC). In addition to characterization measurements using a conventional high-quality signal generator, a Josephson waveform synthesizer that provides ultimately noise- and drift-free voltages was used. To evaluate the suitability of this sampling system as part of a transfer power standard, additional comparisons of the root-mean-square (RMS) values measured were performed against a thermal converter and the primary power sampling standard at the Physikalisch-Technische Bundesanstalt, Braunschweig, Germany. Initial analysis of the measurement data shows an effective resolution in the range of 18–19 bits at an equivalent sampling rate of 64 kHz. The integral nonlinearity error of the system was measured to be within $pm 7 mu hbox{V/V}$ or one least significant bit at this resolution.   相似文献   

15.
This paper presents a new built-in current sensor (BICS)-based $I_{rm DDQ}$ testing scheme for complementary metal-oxide semiconductor (CMOS) integrated circuits (ICs). The proposed BICS will employ short detection times and low power dissipation to effectively ensure the reliability of the BICS and reduce the impact of the circuit under test (CUT) during testing. In addition, an $I_{rm DDQ}$ testing scheme based on the proposed BICS for detecting the abnormal quiescent current is presented. A 16-kB CMOS static random access memory (SRAM) is used as the CUT in this paper to discuss the testing considerations, including fault models and the $I_{rm DDQ}$ testing strategy. The simulation results show that the proposed BICS has a much improved performance compared with that in previous works. In addition, the physical chip design of the proposed BICS-based $I_{rm DDQ}$ testing scheme for SRAM testing applications is also implemented using the Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-$mu hbox{m}$ CMOS technology. The test results show that 100% fault coverage can be achieved with only a 1.23% area overhead penalty.   相似文献   

16.
《IEEE sensors journal》2009,9(3):235-236
Carbon dioxide $({rm CO}_{2})$ is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of ${rm CO}_{2}$ sensing materials exist due to the high chemical stability of ${rm CO}_{2}$. In this work, a novel ${rm CO}_{2}$ microsensor based on nanocrystalline tin oxide $({rm SnO}_{2})$ doped with copper oxide (CuO) has been successfully demonstrated. The ${rm CuO}hbox{-}{rm SnO}_{2}$ based ${rm CO}_{2}$ microsensors are fabricated by means of microelectromechanical systems technology and sol-gel nanomaterial-synthesis processes. At a doping level of ${rm CuO}:{rm SnO}_{2} =1:8$ (molar ratio), the resistance of the sensor has a linear response to ${rm CO}_{2}$ concentrations for the range of 1% to 4% ${rm CO}_{2}$ in air at 450$^{circ}{rm C}$. This approach has demonstrated the use of ${rm SnO}_{2}$, typically used for the detection of reducing gases, in the detection of an oxidizing gas.   相似文献   

17.
《IEEE sensors journal》2008,8(11):1879-1883
A fiber Fabry–Perot (F-P) interferometer and a fiber Bragg grating (FBG) based pressure and temperature multiplexing sensor system is presented. This system is designed for high-temperature oil well down-hole permanent monitoring of pressure and temperature. Connecting a FBG temperature sensor and a F-P pressure sensor in series in the sensor head, the sensor system combines the advantages of simple structure of FBG for temperature sensing and high accuracy and low-temperature cross-sensitivity of F-P pressure sensor. Experimental results showed that the temperature measurement accuracy of 0.5$;^{circ}$C and the long-term drift of the air gap of the F-P pressure sensor at 300$;^{circ}$C is less than 0.1% within 300 h time span. This indicates that a long-term pressure measured accuracy of 0.03 MPa has been achieved in pressure gauge range of 0–30 MPa and in temperature variation range between 18 $;^{circ}$C to 300 $;^{circ}$C.   相似文献   

18.
《IEEE sensors journal》2010,10(2):311-315
The thermal history of a material with initially filled trap states may be probed using thermoluminescence. Since luminescent microparticles are composed of robust oxides, they are viable candidates for sensing temperature under conditions where all other types of direct-contact sensors fail. ${rm Mg}_{2}{rm SiO}_{4}:{rm Tb},{rm Co}$ particles with two thermoluminescent peaks have been heated using micromachined heaters over a 232 $~^{circ} hbox{C}$ to 313 $~^{circ} hbox{C}$ range on time scales of less than 200 ms. The effect of maximum temperature during excitation on the intensity ratio of the two luminescent peaks has been compared with first-order kinetics theory and shown to match within an average error of 4.4%.   相似文献   

19.
A Vibration-Based PMN-PT Energy Harvester   总被引:1,自引:0,他引:1  
《IEEE sensors journal》2009,9(7):731-739
We report design, modeling, analysis, and experimental study of a vibration-based piezoelectric energy harvester. The energy harvester is made of a composite cantilever of a single crystal relaxor ferroelectric material, $(1-x)$Pb(Mg $_{1/3}$Nb $_{2/3}$)O $_{3-x}$PbTiO $_3$ (PMN-PT), and a polydimethylsiloxane (PDMS) base layer. A PDMS proof mass is constructed at the tip of the composite cantilever beam and is used as a means to tune the system natural frequency. The use of the PMN-PT piezoelectric material and an interdigited electrodes (IDEs) design improves the energy conversion efficiency. A dynamic systems modeling approach is employed to analyze the responses and the performance of the harvester design. We have demonstrated that a prototype of the harvester with a size of 7.4 mm $,times,$2 mm $,times,$110 $mu$m outputs a voltage of 10 V (0.3 mW power) under a vibration excitation with a peak-to-peak amplitude of 1 mm at a frequency around 1.3 kHz. Based on the experimental results, the power density prediction of the proposed harvester design shows a superior performance than that of the other reported piezoelectric harvesters.   相似文献   

20.
《IEEE sensors journal》2009,9(2):176-186
This paper covers the design details of an all digital closed-loop interferometric fiber-optic gyroscope (ADCL-IFOG) prototype, constructed in TUBITAK UME, and scale factor comparison between open-loop and ADCL-IFOG prototypes with sine wave biasing modulation. The output of demodulation circuit, proportional to the applied rotation rate, was sampled by AD7714YN analog-to-digital converter (ADC), operated in 16 bit resolution. Error voltage, generated by microcomputer – controlled LTC 1667CG, 14 bit digital to analog converter (DAC), was sent to the phase modulator through a linear summing circuit to make Sagnac Phase Shift zero, depending on the rotation direction. For this implementation, the ultimate rotation rate of 1.84 ($^{circ}/{hbox{h}}$ ) was nullified. The averaged sensitivity of the proposed closed-loop IFOG in unit of error voltage applied to the phase modulator was determined as 132.65 $mu hbox{V}/(^{circ}/{hbox{h}}$ ). The scale factors of both the open-loop and ADCL-IFOG prototypes were compared in a range of 1–15270 ( $^{circ}/hbox{h}$) rotation rate, corresponding to Sagnac Phase Shifts varying from 0.00115 ( $^{circ}$) to 17.57448 ( $^{circ}$). The maximum peak to peak noise and the bias stability of ADCL-IFOG prototype were determined as 4.97 ($^{circ}/hbox{h}$ ) and 1.48 ($^{circ}/hbox{h}$ ) at 23.0$~^{circ}hbox{C}$ , respectively.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号