首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The foremost objective of the current article is to explore the impact of Brownian motion on magnetohydrodynamic Casson nanofluid flow toward a stretching sheet in the attendance of nonlinear thermal radiation. The combined heat and mass transfer characteristics are investigated. The influence of chemical reaction, nonuniform heat source/sink, Soret, and Dufour is deemed. The convective boundary condition is taken. The appropriate transformations are utilized to transform the flow regulating partial differential equations into dimensionless ordinary differential equations (coupled). The numerical outcomes of the converted nonlinear system are solved by the Runge-Kutta based Shooting procedure. Results indicate that the temperature is an increasing function of both thermophoresis and Brownian motion parameters. The concentration of the fluid and the corresponding boundary layer thickness reduces with an enhancement in Lewis number.  相似文献   

2.
An analytical study is performed to investigate the thermal radiation effect on the unsteady two-dimensional magnetohydrodynamic flow of a viscoelastic incompressible fluid (Walters B $B^{\prime} $ fluid model) along an infinite hot vertical sheet embedded in a porous medium. Further, the addition of a heat source in the energy equation as well as a chemical reaction in the concentration equation renders the present analysis realistic in the field of engineering and technology. The governing equations of mass, momentum, energy, and concentration are solved with successive perturbation techniques. The effects of pertinent parameters on fluid velocity, temperature, concentration, and bounding surface coefficients are shown graphically and in tabular form. The salient feature of the present study is to impose control on magnetic field strength vis-à-vis electromagnetic force by regulating voltage in the electric circuit. The important findings are: the elasticity property of the fluid is more sensitive to heated bounding surface consequently free convection current in enhancing the velocity near the plate than the inherent property viscosity. This outcome contributes to the design requirement to control the flow near the heated surface, higher values of frequency parameters contribute to the attainment of a free stream state in temperature distribution. Besides the aforesaid outcome, the present model is conducive to thinning of boundary layer as the elasticity, magnetic as well as free convection parameters enhance the force coefficients at the bounding surface.  相似文献   

3.
Flow phenomena of three-dimensional conducting Casson fluid through a stretching sheet are proposed in the present investigation with the impact of the magnetic parameter in a permeable medium. The adaptation of particular transformations is useful to modify the governing equations into their nondimensional as well as the ordinary form. However, these transformed equations are nonlinear and approximate analytical methods for the solution of the complex form of governing equations. In particular, the Adomian decomposition method is proposed for the solution. The behavior of several variables, such as the magnetic and porous matrix, on the flow profile as well as the rate of shear stress, are discussed via graphs and tables. The conformity of the current result with the earlier study shows a road map for further investigation. The major concluding remarks are; the retardation in the velocity distribution is rendered due to an increase in the Casson parameter moreover, the Casson parameter favors in reducing the rate of shear stress coefficient in magnitude.  相似文献   

4.
During this exploration, Casson nanofluid is taken over a sheet that is curved and stretching in nature and its flow equations are analyzed. Radiation and slip provisions are also taken into consideration. A magnetic field of uniform rate is provided. Convective heat and mass transference extract dominant conclusions from the system. The Brownian migration together with thermophoresis is also included in the flow structure. Moreover, the chemical reaction of higher-order within the nanoingredients also generates interest. Guiding equations furnished by the selected model are resettled to ordinary differential equations of nonlinear type by significant similarity transformation. We have worked on MAPLE-19 software to work out this with a suitable accuracy rate. Upshots are shown with diagrams and tables. Corresponding physical consignment such as Nusselt number has been analyzed. Determination of skin friction and moreover Sherwood's number is also in the area of interest. Magnificent advancement in heat sifting is dealt with by magnetic and Brownian motion specification. The graphs prescribed the upshots of thermophoresis and slip parameters. Outcomes convey that temperature together with concentration are reduced for stretching parameters but velocity lines are enhanced. Heat transport goes up for magnetic and Brownian motion framework but elevated outcomes are spotted for radiative flow in contrast to nonradiative flow. Mass transfer is reduced for chemical reaction components but the rate of augmentation is elevated for higher-order chemically reactive flow. Mass Biot number and temperature Biot number both increase the concentration and temperature transport, respectively.  相似文献   

5.
The aim of the present work is to focus on heat and mass transfer characteristics of the magnetohydrodynamic three-dimensional flow of nanofluid over a permeable stretching porous sheet. The significance of this study is the consideration of copper-based and aluminum oxide-based nanofluids. The physical parameters like a chemical reaction, Soret effect, radiation, and heat generation, and radiation absorption being involved in this examination are novel. The nonlinear partial differential equations are transformed into ordinary differential equations by adopting suitable similarity transformations. The numerical solutions are obtained by applying the Runge–Kutta method of fourth-order with the Shooting technique using MATLAB. The results obtained are presented through graphs and tables for various parameters. A comparison with published results has been done to validate the methodology and found good coincidence. It is claimed that the increase in heat generation parameters results in increasing the temperature. With an increase in the Soret effect, the skin friction coefficient along x-axis increases and skin friction coefficient along the y-axis, Nusselt number and Sherwood number decrease.  相似文献   

6.
In the present study, we investigate the velocity, thermal, solutal, and motile micro‐organism (MM) slip effects on the flow of chemically reactive Casson nanofluid flowing over an exponentially stretched electromagnetic sheet in the presence of a chemical reaction. In addition, a mechanism of improving the motion of nanoparticles (Brownian motion and thermophoresis) is incorporated. The nondimensionalized ordinary differential equations are tackled by using symbolic computation software, MATLAB 2012b, with bvp4c function. Some significant and relevant characteristics of associated profiles are displayed graphically and discussed beautifully with the aid of tables through comprehensive numerical computations. The results of the study show that elevated Casson fluid parameter, gyrotactic micro‐organism, and electromagnetic strength belittle both axial as well as transverse velocities and the related momentum boundary layer thickness. Another important outcome is that low Prandtl fluids and enhancement in the strength of electromagnetic field fasten the diffusion of micro‐organisms, thereby augmenting the density of MM in the related boundary layer.  相似文献   

7.
In the present study, the magnetohydrodynamic characteristics of an electrically conducting nanofluid flowing past an inclined stretching sheet have been studied numerically. The governing partial differential equations were transformed to nonlinear ordinary differential equations (ODEs) via suitable similarity variables. The wall suction/injection as well as Navier's first‐order slip has been considered for velocity, temperature, and concentration at the wall. The ODEs were solved in a finite difference framework via a computer program written in Engineering Equation Solver platform. The effect of different parameters on the velocity, temperature, and concentration field has also been presented. Multiple slip flow finds its application in many practical fields such as microelectromechanical systems, nanoelectromechanical systems, flow of micro‐organisms, rarefied gas flow, to name a few.  相似文献   

8.
This study focuses on analyzing the response of a magnetohydrodynamic convective Carreau nanofluid flow over a bilateral nonlinear stretching sheet in the presence of a heat source and zero mass flux condition. The problem has been solved numerically using the MATLAB built-in function bvp5c. The findings of velocity, temperature, and concentration profiles based on the various parameters are illustrated using graphs. The impact of various parameters on the heat transfer rate is scrutinized using statistical techniques, like, correlation coefficient, probable error, and regression. The effect of various parameters on skin friction coefficients is studied via tables and slope of linear regression. It is observed that the statistical results coincide with the numerical results. It is also noticed that the stretching ratio parameter increases the Y-directional velocity profile. Accuracy of the numerical procedure has been validated through a restrictive comparison of the present work with previous published results and is found to be in good agreement.  相似文献   

9.
A numerical review on magnetohydrodynamics radiative motion of Cross nanofluid across an exponentially stretchable surface near stagnation point with varying heat source/sink is addressed. Brownian movement and thermophoretic impacts are assumed. The governing equations for this study are first altered as a system of ordinary differential equations by similarity transformation. With an aid of the Runge–Kutta 4th order mechanism together with the shooting procedure, the impacts of several pertinent parameters including chemical reaction on regular profiles (velocity, temperature, and concentration) are explicated. The consequences of the same parameters on surface drag force, transfer rates of heat, and mass are visualized in tables. From the analysis, it was noticed that the magnetic field parameter enhances the temperature and decreases the velocity of the Cross nanofluid. Also, fluid temperature is an increasing function with thermal radiation and nonuniform heat source/sink. The rate of heat transfer is increased with thermophoresis and diminished with Brownian motion. Sherwood's number is diminished with Brownian motion but it was boosted up with thermophoresis. The present results are compared with published results and those are in agreement.  相似文献   

10.
This study involvesthe numerical modeling of steady thermal radiation and chemical reaction on non-Newtonian fluid motion via a bidirectional stretching surface. We have taken convective boundary conditions, and heat sources on the stretching surface. The working fluid of the present study is Casson fluid (“non-Newtonian”) with couple stress. The self-similarity forms of the nonlinear thermal radiative flow model are obtained by using similarity variables. Furthermore, the numerical results are computed with the help of fourth-order Runge–Kutta–Fehlberg method with a shooting algorithm after reducing nonlinear partial differential equations have been translated into strong ordinary differential equations (ODEs). Impacts of the various flow physical parameters especially Biot number, nonlinear thermal radiation, and heat source parameters containing nonlinear ODEs are discussed in detail for distinct numerical values. A comparison of calculated results with the known numerical results made with the previously published literature is mentioned and obtained a good agreement. Finally, we found that the R e x 1 / 2 C f x $R{e}_{x}^{1/2}{C}_{fx}$ (“coefficient of skin friction”) declines along x * , y * $x* ,\,y* $ directions, respectively, with β $\beta $ via λ $\lambda $ while the opposite direction follows M $M$ with respect to λ $\lambda $ and the R e x 1 / 2 N u x $R{e}_{x}^{-1/2}N{u}_{x}$ (“heat transfer rate”), R e x 1 / 2 S h $R{e}_{x}^{-1/2}Sh$ (“mass transfer rate”) increase with Γ $\Gamma $ via γ 1 ${\gamma }_{1}$ while opposite direction follows γ 1 ${\gamma }_{1}$ with respect to γ 2 ${\gamma }_{2}$ .  相似文献   

11.
The present investigation throws light on the heat transfer behavior of hybridized (ferro-aluminum alloy [AA7075]) nanofluid. In addition to that, influences of thermal radiation, magnetic effect, and chemical reaction are also considered for the exploration. Here, the flow is deliberated due to a porous stretching cylinder. The equations that portray the fluid flow are transfused to simple ordinary differential equations by applying similarity elements. Then, the procured equations have been solved by adopting the Runge–Kutta–Fehlberg 4th–5th order tool. The extracted solution are exported to plot graphs for velocity, thermal, and solutal profiles with the concerned parameters, and using these plots, the discussion has been produced for the behavior of all flow fields. The behavior of the thermal profile shows substantial enhancement with an increase in the solid volume fraction of hybrid nanofluid. The velocity and concentration panel de-escalates for larger values of Reynolds number. A significant discussion on the skin friction drag, Nusselt number, and Sherwood number has been produced.  相似文献   

12.
13.
The investigations on the flow of non-Newtonian fluids are becoming one of the major topics in the research field. These liquids have substantial applications in industrial and engineering fields such as drilling rigs, food processing, paint and adhesives, nuclear reactors and cooling systems. On the other hand, hybrid nanofluids play a major role in the heat transfer process. Keeping this in mind, the motion of Casson hybrid nanofluid squeezing flow between two parallel plates with the effect of heat source and thermophoretic particle deposition is examined here. The partial differential equations that govern fluid flow are converted into ordinary differential equations using appropriate similarity variables and those equations are numerically solved using the Runge–Kutta–Fehlberg fourth–fifth-order method by implementing the shooting scheme. The graphs depict the effects of a number of key parameters on fluid profiles in the absence and presence of the Casson parameter. These graphs show that fluid velocity enhances with the augmentation of the local porosity parameter. Thermal dispersal upsurges for enhancement of heat source/sink parameter and the concentration profile escalates for an upsurge of the thermophoretic parameter. Skin friction enhances with enhancement in the local porosity parameter.  相似文献   

14.
This study explores the entropy generation analysis on unsteady nonlinear radiative ethylene glycol-based Casson nanofluid flow near stagnation point towards a stretching sheet through a porous medium. Analysis has been accomplished in the presence of an inclined magnetic field, heat generation, homogeneous–heterogeneous reactions, and viscous dissipation with velocity slip and convective boundary conditions. The nondimensional governing equations are solved by the shooting technique with the help of the RK45 method. We have experimented with copper and silver nanoparticles and a comparative analysis has been highlighted for both copper and silver nanofluids. Numerical outcomes are executed by the MATLAB built-in bvp4c function. The consequences of the experiment for various pertinent flow parameters are portrayed by graphs and tables for both the Ag- and Cu-Casson nanofluids. Results reveal that the enhancement of nanoparticles volume fraction accelerates temperature but it slows down concentration and velocity distributions. Higher values of the Eckert number boost velocity and temperature but reduce skin friction coefficient and Nusselt number. Enhancement of the Brinkman number boosts up entropy generation but it slows down Bejan's number. The results of the model can be applied in the movement of biological fluids, separation of biomolecules, glass manufacturing, paper production, food processing, crude oil purification, polymer drag reduction, and cooling atomic reactors.  相似文献   

15.
This paper presents the analytical study of heat and mass transfer in a two-dimensional time-dependent flow of Williamson nanofluid near a permeable stretching sheet by considering the effects of external magnetic field, viscous dissipation, Joule heating, thermal radiation, heat source, and chemical reaction. Suitable transformations are introduced to reformulate the governing equations and the boundary conditions convenient for computation. The resulting sets of nonlinear differential equations are then solved by the homotopy analysis method. The study on the effects of relevant parameters on fluid velocity, temperature, and concentration profiles is analyzed and presented in graphical and tabular forms. Upon comparison of the present study with respect to some other previous studies, a very good agreement is obtained. The study points out that the transfer of heat can substantially be enhanced by decreasing viscoelasticity of the fluid and the transfer of mass can be facilitated by increasing permeability of the stretching sheet.  相似文献   

16.
An analysis is built up for the exploration of radiative heat transport on the magnetohydrodynamic flow of rotating fluid over a vertical sheet. The inclusion of thermal radiation in conjunction with the reacting species enhances the energy as well as the solutal profiles respectively. In an advance, external heat source and applied magnetic field effects are considered for further improvement. As the magnetic Reynolds number is low, the influence of the induced magnetic field is neglected. The transformation of governing nonlinear partial differential equations into coupled nonlinear ordinary differential equations is attained with a proper supposition of similarity variables. Moreover, the solution of these transformed equations is scheduled using the “Runge–Kutta fourth-order” method numerically in association with the “shooting technique.” The simulation or various illustrating parameters affecting the flow phenomena are obtained and displayed through graphs and for numerical validation with earlier published work shows the convergence process of the methodology applied. The main findings of the study are; the Dufour number is favorable to enhance the fluid temperature throughout the domain and the destructive chemical reaction also encourages the solutal profile significantly.  相似文献   

17.
The present article investigates the influence of Joule heating and chemical reaction on magneto Casson nanofluid phenomena in the occurrence of thermal radiation through a porous inclined stretching sheet. Consideration is extended to heat absorption/generation and viscous dissipation. The governing partial differential equations were transformed into nonlinear ordinary differential equations and numerically solved using the Implicit Finite Difference technique. The article analyses the effect of various physical flow parameters on velocity, heat, and mass transfer distributions. For the various involved parameters, the graphical and numerical outcomes are established. The analysis reveals that the enhancement of the radiation parameter increases the temperature and the chemical reaction parameter decreases the concentration profile. The empirical data presented were compared with previously published findings.  相似文献   

18.
A steady two‐dimensional Casson nanofluid flow over the permeable stretching/shrinking sheet along the viscous dissipation and the chemical reaction is studied in this article. The convective boundary condition is incorporated in energy equation. Similarity variables are applied to convert the governing partial differential equations into ordinary differential equations. The numerical solutions of the equations are obtained by using the shooting method with Maple implementation. The numerical findings indicate occurrence of the dual solutions for a certain range of stretching/shrinking and suction parameters. Therefore, a stability analysis is done to find the solution that is stable and physically realizable. The effects of the pertinent physical parameters on velocity, temperature, and concentration profiles are investigated graphically. Numerical results of various parameters involved for skin friction coefficient, the local Nusselt as well as Sherwood numbers are determined and also discussed in detail. The Casson and suction parameters decrease the velocity in the first solution, whereas they increase it in the second solution. The rate of heat transfer increases in both solutions with an increment in Eckert number, Biot number, thermophoresis, and Brownian motion parameters. Thermophoresis and Brownian motion parameters show opposite behavior in the nanoparticle's concentration. The nanoparticle concentration decreases in both solutions with increment in Schmidt number, Brownian motion, and chemical reaction parameters.  相似文献   

19.
The objective of the present study is to investigate the effects of the variable magnetic field, chemical reaction, thermal radiation, Soret effect, and variable heat absorption on the fluid flow and heat and mass transfer of an unsteady Casson fluid past a stretching surface in a saturated porous medium. Velocity slip near the plate and conjugate heating boundary conditions in heat and mass transfer have been considered in this study. Due to the complexities in boundary conditions, the analytic solution of the governing equations of the present model is not possible. Thus, to overcome these issues, the coupled partial differential equations of the model are converted into a set of ordinary differential equations using similarity transformation. These equations have then been solved numerically using the fourth-order Runge-Kutta technique via the shooting method. The effects of various pertinent flow parameters on the velocity, concentration, and temperature field have been studied graphically. For the field of engineering, to get an insight into the physical quantities, especially Nusselt number, Sherwood number, and skin friction, their numerical values have been estimated against various parameters and presented in tables. From the tabulated values, it has been perceived that the shear stress increases with an increase in magnetic parameter, unsteadiness parameter, Casson parameter, and heat source parameter, whereas the Biot number shows the reverse trend. The mixture of porous media has justified that the heat transport process over a stretching sheet results in averting heat loss and accelerating the process of cooling, which is a significant outcome of the study. Furthermore, it has also been revealed that with the increase in the Soret effect and magnetic field, there is a reduction in the fluid velocity and temperature near the plate, whereas there is an increase in the species concentration. It has also been mentioned that the effects of the variable magnetic field have been widely applied in various engineering applications like magnetohydrodynamic (MHD) propulsion forces, rate of cooling, MHD power generation, and so on.  相似文献   

20.
The Buongiorno model Maxwell nanofluid flow, heat and mass transfer characteristics over a stretching sheet with a magnetic field, thermal radiation, and chemical reaction is numerically investigated in this analysis. This model incorporates the effects of Brownian motion and thermophoresis. The governing partial differential equations are transformed into a coupled nonlinear ordinary differential equation by using the similarity transformation technique. The resultant nonlinear differential equations are solved by using the Finite element method. The sketches of velocity, temperature and concentration with diverse values of magnetic field parameter (0.1 ≤ M ≤ 1.5), Deborah number (0.0 ≤ β ≤ 0.19), radiation parameter (0.1 ≤ R ≤ 0.7), Prandtl number (0.5 ≤ Pr ≤ 0.8), Brownian motion parameter (0.1 ≤ Nb ≤ 0.7), thermophoretic parameter (0.2 ≤ Nt ≤ 0.8), Chemical reaction parameter (1.0 ≤ Cr ≤ 2.5) and Lewis number (1.5 ≤ Le ≤ 3.0) have investigated and are depicted through plots. Moreover, the values of the Skin-friction coefficient, Nusselt number, and Sherwood numbers are also computed and are shown in tables. The sequels of this analysis reviewed that the values of Skin-friction coefficient and Sherwood number intensified with hiked values of Deborah number (β), whereas, the values of Nusselt number decelerate as values of (β) improves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号